
Graph-based Keyword Spotting in Historical
Handwritten Documents

Michael Stauffer1,3, Andreas Fischer2, and Kaspar Riesen1

1 University of Applied Sciences and Arts Northwestern Switzerland,
Institute for Information Systems, Riggenbachstr. 16, 4600 Olten, Switzerland

{michael.stauffer,kaspar.riesen}@fhnw.ch
2 University of Fribourg and HES-SO, 1700 Fribourg, Switzerland

andreas.fischer@unifr.ch
3 University of Pretoria, Department of Informatics, Pretoria, South Africa

Abstract. The amount of handwritten documents that is digitally avail-
able is rapidly increasing. However, we observe a certain lack of accessibil-
ity to these documents especially with respect to searching and browsing.
This paper aims at closing this gap by means of a novel method for
keyword spotting in ancient handwritten documents. The proposed sys-
tem relies on a keypoint-based graph representation for individual words.
Keypoints are characteristic points in a word image that are represented
by nodes, while edges are employed to represent strokes between two key-
points. The basic task of keyword spotting is then conducted by a recent
approximation algorithm for graph edit distance. The novel framework for
graph-based keyword spotting is tested on the George Washington dataset
on which a state-of-the-art reference system is clearly outperformed.

Keywords: Handwritten Keyword Spotting, Bipartite Graph Matching,
Graph Representation for Words

1 Introduction

Keyword Spotting (KWS) is the task of retrieving any instance of a given query
word in speech recordings or text images [1–3]. Textual KWS can be roughly
divided into online and offline KWS. For online KWS temporal information of
the handwriting is available recorded by an electronic input device such as, for
instance, a digital pen or a tablet computer. On the other hand side, offline KWS
is based on scanned image only, and thus, offline KWS is regarded as the more
difficult task than its online counterpart. The focus of this paper is on KWS in
historical handwritten documents. Therefore, offline KWS, referred to as KWS
from now on, can be applied only.

Most of the KWS methodologies available are either based on template-
based or learning-based matching algorithms. Early approaches of template-
based KWS are based on a pixel-by-pixel matching of word images [1]. More
elaborated approaches to template-based KWS are based on the matching of
feature vectors by means of Dynamic Time Warping (DTW) [4]. A recent



2 M. Stauffer et al.

and promising approach to template-based KWS is given by the matching
of Local Binary Pattern (LBP) histograms [5]. One of the main advantages
of template-based KWS is its independence from the actual representation
formalism as well as the underlying language (and alphabet) of the document.
However, template-based KWS does not generalise well to different writing
styles. Learning-based KWS on the other side is based on statistical models like
Hidden Markov Models (HMM) [6,7], Neural Networks (NN) [3] or Support Vector
Machines (SVM) [8]. These models have to be trained a priori on a (relatively
large) set of training words. An advantage of the learning-based approach, when
compared with the template-based approach, is its higher generalisability. Yet,
this advantage is accompanied by a loss of flexibility, which is due to the need
for learning the parameters of the actual model on a specific training set.

The vast majority of KWS algorithms available are based on statistical
representations of word images by certain numerical features. To the best of
our knowledge only few graph-based KWS approaches have been proposed so
far [9–12]. However, a graph-based representation is particularly interesting
for KWS as graphs, in contrast with feature vectors, offer a more natural and
comprehensive formalism for the representation of word images.

A first approach for graph-based KWS has been proposed in [10]. The nodes
of the employed graphs represent keypoints that are extracted on connected
components of the skeletonised word images, while the edges are used to represent
the strokes between the keypoints. The majority of the words consists of more
than only one connected component, and thus, a word is in general represented
by more than one graph. The matching of words is thus based on two separate
procedures. First, the individual costs of assignments of all pairs of connected
components (represented by graphs) are computed via bipartite graph match-
ing [13]. Second, an optimal assignment between the connected components has
to be found. To this end, a DTW algorithm is employed that operates on the
costs produced in the first step. This matching procedure is further improved by
a so-called coarse-to-fine approach in [11].

Another idea for graph-based KWS has been introduced in [12]. In this paper
a graph represents a set of prototype strokes (called invariants). First, a word
image is segmented into strokes. Eventually, the most similar invariant is defined
for every stroke in the word. The nodes of the graph are used to represent these
invariants, while edges are inserted between all pairs of nodes. Edges are labelled
with the information whether or not strokes of the corresponding nodes are
stemming from the same connected component. Finally, for KWS the graph edit
distance is computed by means of the bipartite graph matching algorithm [13].

A third approach for graph-based KWS has been proposed in [9] where
complete text lines are represented by a grapheme graph. Graphemes are sets of
prototype convexity paths, similar to invariants, that are defined a priori in a
codebook. The nodes of the particular graphs represent the individual graphemes
of the text line, while edges are inserted into the graph whenever two graphemes
are directly connected to each other. The matching itself is based on a coarse-to-
fine approach. Formally, potential subgraphs of the query graph are determined



Graph-based Keyword Spotting in Historical Handwritten Documents 3

first. These subgraphs are subsequently matched against a query graph by means
of the bipartite graph matching algorithm [13].

In the present paper we introduce a novel approach for graph representation
of individual words that is based on the detection of keypoints. In contrast
with [10] our approach results in a single graph per word. Hence, no additional
assignment between graphs of different connected components is necessary during
the matching process. Furthermore, in our approach the edges are detected by
a novel method based on both the skeleton of connected components and their
connected subcomponents. Last but not least, also the graph matching procedure
actually employed for KWS has been substantially extended when compared to
the previous contributions in the field. In particular, we introduce different types
of linear and non-linear cost functions for the edit operations used in [13].

The remainder of this paper is organised as follows. In Sect. 2, the basic
concept of graph edit distance is briefly reviewed. In Sect. 3, the proposed graph-
based KWS approach is introduced. An experimental evaluation of the proposed
framework is given in Sect. 4. Section 5 concludes the paper and outlines possible
further research activities.

2 Graph Edit Distance

A graph g is formally defined as a four-tuple g = (V,E, µ, ν) where V and E
are finite sets of nodes and edges, and µ : V → LV as well as ν : E → LE
are labelling functions for nodes and edges, respectively. Graphs can be divided
into undirected and directed graphs, where pairs of nodes are either connected
by undirected or directed edges, respectively. Additionally, graphs are often
distinguished into unlabelled and labelled graphs. In the latter case, both nodes
and edges can be labelled with an arbitrary numerical, vectorial, or symbolic
label from Lv or Le, respectively. In the former case we assume empty label
alphabets, i.e. Lv = Le = {}.

Graphs can be matched with exact and inexact methods [14,15]. Inexact graph
matching, in contrast to exact graph matching, allows matchings between two
non-identical graphs by endowing the matching with a certain error-tolerance with
respect to labelling and structure. Several approaches for inexact graph matching
have been proposed. Yet, Graph Edit Distance (GED) is widely accepted as one
of the most flexible and powerful paradigms available [16]. The GED between
two graphs g1 and g2 is defined as the least costly series of edit operations to be
applied to g1 in order to make it isomorphic to g2. Formally,

GED(g1, g2) = min
(e1,...,ek)∈γ(g1,g2)

k∑
i=1

c(ei)

where ei denotes an edit operation, (e1, . . . , en) an edit path, γ(g1, g2) the set
of all edit paths that transform g1 into g2, and c(ei) the cost for a certain edit
operation ei. Different types of edit operations are allowed such as substitutions,
insertions, deletions, splittings, and mergings of both nodes and edges. Commonly,
the cost function c(ei) considers domain-specific knowledge and reflects the
strength of edit operation ei.



4 M. Stauffer et al.

The computation of the exact GED is commonly based on an A*-algorithm
that explores all possible edit paths γ(g1, g2) [17]. However, this exhaustive search
is exponential with respect to the number of nodes of the involved graphs.

In order to make the concept of GED applicable to large graphs and/or large
graph sets, several fast but approximative algorithms have been proposed [13,18].
In the present paper we make use of the well-known bipartite graph matching al-
gorithm for approximating the GED in cubic time complexity [13]. This algorithm
is based on an optimal match between nodes and their local structure (i.e. their
adjacent edges). That is, the suboptimal computation of the GED is based on a
reduction of the GED problem to a Linear Sum Assignment Problem (LSAP),
which can be optimally solved by, for instance, Munkres’ algorithm [19]. In case of
scalability limitations, one could also make use of the graph matching algorithm
for approximating the GED in quadratic, rather than cubic, time complexity [18].

3 Graph-based Keyword Spotting

The proposed graph-based KWS solution is based on four different processing
steps as shown in Fig. 1. First, document images are preprocessed and segmented
into words (1). Based on the segmented word images, graphs are extracted
by means of a novel keypoint-based method (2) and eventually normalised (3).
Finally, the graphs of query words are matched against graphs from the document
to create a retrieval index (4). In the following four subsections these four steps
are described in greater detail.

QueryDocument Words Graphs Index

4) Pairwise
Matching

1) Image
 Preprocessing

3) Graph
Normalisation…

2 ) Graph
Representation

…

1

2

3

… n

Fig. 1. Process of graph-based keyword spotting of the word ”October”

3.1 Image Preprocessing

Image preprocessing aims at reducing variations on document images that are
caused, for instance, by noisy background, skewed scanning, or document degra-
dation. In our particular framework, document images are first filtered by a
Difference of Gaussian (DoG) and binarised by a global threshold [20]. Single
word images are then manually segmented. That is, we build our framework on
perfectly segmented words in order to focus on the task of KWS. The skew, i.e.
the inclination of the document, is removed by a hierarchical rotation of the
complete document image such that the horizontal projection profile is step-wise
maximised [21]. Note that the skew angle is estimated on complete document
images first and then corrected on single word images. Finally, each word image
is skeletonised by a 3× 3 thinning operator [22].



Graph-based Keyword Spotting in Historical Handwritten Documents 5

3.2 Graph Representation

For a graph-based KWS system to succeed, the variations among graphs of the
same word have to be minimised, while variations of graphs of different words
should remain large. Hence, a graph representation has to represent the inherent
characteristic of a word. In the present paper the graph extraction algorithm is
based on the detection of keypoints. Keypoints are characteristic points in a word
image, such as for instance end- and intersection-points of strokes. The proposed
approach is inspired by [7]. However, in contrast with [7] the proposed graph
representation makes use of both nodes and edges. Additionally, the keypoint
detection is further refined by a local search algorithm.

Graphs are created on the basis of filtered, binarised, and skeletonised word
images S (see Algorithm 1). First, end points and junction points are identified for
each Connected Component (CC) of the skeleton image (see line 2 of Algorithm 1).
For circular structures, such as for instance the letter ‘O’, the upper left point
is selected as junction point. Note that the skeletons based on [22] may contain
several neighbouring end- or junction points. We apply a local search procedure
to select only one point at each ending and junction (this step is not explicitly
formalised in Algorithm 1). Both end points and junction points are added to
the graph as nodes, labelled with their image coordinates (x, y) (see line 3).

Next, junction points are removed from the skeleton, dividing it into Connected
Subcomponents (CCsub) (see line 4). Afterwards, for each connected subcompo-
nent intermediate points (x, y) ∈ CCsub are converted to nodes and added to the
graph in equidistant intervals of size D (see line 5 and 6).

Finally, an undirected edge (u, v) between u ∈ V and v ∈ V is inserted
into the graph for each pair of nodes that is directly connected by a chain of
foreground pixels in the skeleton image S (see line 7 and 8).

Algorithm 1 Graph Extraction Based on Keypoints

Input: Skeleton image S, Distance threshold D
Output: Graph g = (V,E) with nodes V and edges E
1: function Keypoint(S,D)
2: for Each connected component CC ∈ S do
3: V = V ∪ {(x, y) ∈ CC | (x, y) are end- or junction points}
4: Remove junction points from CC
5: for Each connected subcomponent CCsub ∈ CC do
6: V = V ∪ {(x, y) ∈ CCsub | (x, y) are points in equidistant intervals D}
7: for Each pair of nodes (u, v) ∈ V × V do
8: E = E ∪ (u, v) if the corresponding points are connected in S

9: return g = (V,E)



6 M. Stauffer et al.

3.3 Graph Normalisation

In order to improve the comparability between graphs of the same word class, the
labels µ(v) of the nodes v ∈ V are normalised. In our case the node label alphabet
is defined by Lv = R2. A first graph normalisation is based on a centralisation of
each node label µ(v) = (x, y) ∈ R2 by

x̂ = x− µx and ŷ = y − µy, (1)

where x̂ and ŷ denote the new node coordinates, x and y the original node
position, µx, and µy represent the mean values of all (x, y)-coordinates in the
graph under consideration.

The second graph normalisation centralises the node labels and reduces
variations of node positions that might occur due to different word image sizes.
Formally,

x̂ =
x− µx
σx

and ŷ =
y − µy
σy

, (2)

where σx and σy denote the standard deviation of all node coordinates in the
current graph.

3.4 Pairwise Matching

The actual KWS is based on a pairwise matching of a query graph g against all
graphs of a set of word graphs G = {g1, . . . , gn} stemming from the underlying
document. We make use of the bipartite graph matching algorithm [13]. In our
system the resulting GED between g and gi ∈ G is normalised by using the cost
of the maximum cost edit path between g and gi, viz. the edit path that results
from deleting all nodes and edges of g and inserting all nodes and edges of gi.
We refer to this maximum cost as Max-GED from now on. By means of this
procedure a retrieval index ri(g) ∈ [0, 1] can be created for every word graph
gi ∈ G given a certain query graph g. Formally,

ri(g) =
GED(g, gi)

Max-GED(g, gi)

The effectiveness of edit distance based KWS relies on an adequate definition of
cost functions for the basic edit operations. In general, the cost c(e) of a particular
edit operation e is defined with respect to the underlying label alphabets LV and
LE . In our framework the nodes are labelled with two-dimensional numerical
labels while edges remain unlabelled, i.e. LV = R2 and LE = {}. In the present
section four cost functions are defined for this particular labelling.

For all of our cost models a constant cost τv ∈ R+ for node deletion and
insertion is used. Formally, the cost for the node deletions and insertions is
defined by c(u → ε) = c(ε → v) = τv. For edges a similar cost with another
constant cost τe ∈ R+ is defined. The cost models to be used in our framework
differ in the definition of the cost for node substitutions. The basic intuition



Graph-based Keyword Spotting in Historical Handwritten Documents 7

behind all approaches is that the more dissimilar two labels are, the stronger is
the distortion associated with the corresponding substitution.

The first cost model is based on a weighted Euclidean distance of the two
corresponding labels. Formally, given two graphs g1 = (V1, E1, µ1, ν1) and g2 =
(V2, E2, µ2, ν2), where µ1, µ2 : V1, V2 → R2 the cost for a node substitution
(u→ v) with µ1(u) = (xi, yi) and µ2(v) = (xj , yj) is defined by

cE(u→ v) =
√
α(xi − xj)2 + (1− α)(yi − yj)2,

where α ∈ [0, 1] is a weighting parameter to define whether the x- or the
y-coordinate is more important for the resulting substitution cost.

For graphs with scaled node labels (see Sect. 3.3) the standard deviation σ
of the node labels of a query graph might be additionally included in the cost
model by defining

cEσ (u→ v) =
√
ασx(xi − xj)2 + (1− α)σy(yi − yj)2,

where σx and σy denote the standard deviation of all node coordinates in the
query graph.

The third and fourth cost function are based on the weighted Euclidean
distance that is additionally scaled by means of a Sigmoidal function to [0, 2τv].
Formally,

cS(u→ v) =
2τv

1 + e(kcE(u→v)−γ) and cSσ (u→ v) =
2τv

1 + e(kcEσ (u→v)−γ)
,

where k is the steepness and γ the threshold of the Sigmoidal function. For
both cost functions cS and cSσ the maximal substitution cost is equal to the sum
of cost of a node deletion and node insertion.

4 Experimental Evaluation

The experimental evaluation of the proposed KWS system is carried out on the
George Washington (GW) dataset, which consists of twenty pages of handwritten
letters with only minor variations in the writing style4. The same dataset has
already been used in [6, 23,24]. For our KWS framework individual graphs are
created for each of the 4893 words of the dataset by means of the keypoint-based
graph representation algorithm described in Sect. 3.2. We use a threshold of
D = 5 for all of our evaluations.

The performance of KWS is measured by the mean Average Precision (mAP)
in two subsequent experiments. First, the meta-parameters and the different
image and graph normalisations are optimised for all cost functions. To this end,
the mAP is computed on a small validation set, consisting of ten different query

4 George Washington Papers at the Library of Congress, 1741-1799: Series 2, Letterbook
1, pp. 270-279 & 300-309, http://memory.loc.gov/ammem/gwhtml/gwseries2.html



8 M. Stauffer et al.

words with a frequency of at least 10 as well as a reduced training set based on
1000 different words including all instances of the query word.

In Table 1 the results of this validation phase are shown. We distinguish
between graphs that are based on word images where the skew is corrected or not.
For both variants we use graphs where the node labels remain unnormalised (de-
noted by U in Table 1), and graphs where the labels are normalised by using (1)
and (2) (denoted by N1 and N2, respectively). Note that the cost models cE and
cS can be applied to graph normalisation with N2 only.

Table 1. mAP of Euclidean and Sigmoidal cost functions for different preprocessing

Preprocessing Skew not corrected Skew corrected

Cost Function U N1 N2 U N1 N2

cE 50.17 72.87 - 47.08 72.24 -
cEσ - - 76.53 - - 75.59
cS 49.71 72.72 - 50.60 73.53 -
cSσ - - 76.24 - - 75.24

We observe that graphs based on not skew corrected word images in combina-
tion with scaled and centralised node labels (N2) is optimal for both the Euclidean
and the Sigmoidal cost functions. These two models are further optimised by
means of the node label weighting factor α. By using this weighting parameter,
the mAP can be increased from 76.53 to 80.94 and from 76.24 to 79.32 with cEσ
and cSσ , respectively.

Using this optimal parameter settings, the proposed KWS system is compared
with a reference system based on DTW [23, 24] with optimised Sakoe-Chiba
band. This evaluation is conducted in a four-fold cross-validation, where each
fold consists of a test set (avg. 2447 words) that is tested with a training set (avg.
1223.5 words).

In Table 2 the results of our novel graph-based KWS system (using both
cEσ and cSσ ) and the reference DTW system are given. Our graph-based system
outperforms the DTW-based KWS system in both cases. The Euclidean and
Sigmoidal cost models improve the mAP of the reference system by 2.31% and
5.62%, respectively.

Table 2. Graph-based vs. DTW-based KWS

System mAP Improvement

DTW 54.08
Proposed cEσ 55.33 + 2.31%
Proposed cSσ 57.12 + 5.62%



Graph-based Keyword Spotting in Historical Handwritten Documents 9

5 Conclusion and Outlook

The novel KWS system proposed in this paper is based on a keypoint-based
graph representation of individual words. Keypoints are characteristic points in a
word image that are represented by nodes, while edges are represented by strokes
between two keypoints. The actual KWS is based on a bipartite matching of pairs
of graphs. Four different cost functions have been introduced to quantify the
substitution cost of nodes that are matched. These cost functions in combination
with different image and graph normalisations are optimised on the George
Washington dataset. The optimal system clearly outperforms the reference DTW
algorithm.

In future work, we aim at extending our word-based approach to a line-based
approach. The actual KWS would therefore be based on finding a subgraph
isomorphism of a query graph in the larger line graph. Moreover, other graph
representation formalisms as well as more powerful labelling functions could be
a rewarding avenue to be pursued. Thus, we will be able to conduct a more
thorough comparison against other state-of-the-art systems using further graph
representations and documents.

Acknowledgments. This work has been supported by the Hasler Foundation
Switzerland.

References

1. Manmatha, R., Chengfeng Han, Riseman, E.: Word spotting: a new approach to
indexing handwriting. In: Comp. Vision and Pattern Rec. (1996) 631–637

2. Rath, T., Manmatha, R.: Word image matching using dynamic time warping. In:
Comp. Vision and Pattern Rec. Volume 2. (2003) II–521–II–527

3. Frinken, V., Fischer, A., Manmatha, R., Bunke, H.: A novel word spotting method
based on recurrent neural networks. IEEE Trans. PAMI 34(2) (2012) 211–224

4. Kolcz, A., Alspector, J., Augusteijn, M., Carlson, R., Viorel Popescu, G.: A Line-
Oriented Approach to Word Spotting in Handwritten Documents. Pattern Anal.
and Appl. 3(2) (2000) 153–168

5. Dey, S., Nicolaou, A., Llados, J., Pal, U.: Local Binary Pattern for Word Spotting
in Handwritten Historical Document. Computing Research Repository (2016)

6. Lavrenko, V., Rath, T., Manmatha, R.: Holistic word recognition for handwritten
historical documents. In: Int. W. on Doc. Image Anal. for Libraries. (2004) 278–287

7. Fischer, A., Riesen, K., Bunke, H.: Graph similarity features for HMM-based
handwriting recognition in historical documents. In: Int. Conf. on Frontiers in
Handwriting Rec. (2010) 253–258

8. Huang, L., Yin, F., Chen, Q.H., Liu, C.L.: Keyword Spotting in Offline Chinese
Handwritten Documents Using a Statistical Model. In: Int. Conf. on Doc. Anal.
and Rec. (2011) 78–82

9. Riba, P., Llados, J., Fornes, A.: Handwritten word spotting by inexact matching of
grapheme graphs. In: Int. Conf. on Doc. Anal. and Rec. (2015) 781–785

10. Wang, P., Eglin, V., Garcia, C., Largeron, C., Llados, J., Fornes, A.: A Novel
Learning-Free Word Spotting Approach Based on Graph Representation. In: Int.
W. on Doc. Anal. Systems. (2014) 207–211



10 M. Stauffer et al.

11. Wang, P., Eglin, V., Garcia, C., Largeron, C., Llados, J., Fornes, A.: A Coarse-
to-Fine Word Spotting Approach for Historical Handwritten Documents Based on
Graph Embedding and Graph Edit Distance. In: Int. Conf. on Pattern Rec. (2014)
3074–3079

12. Bui, Q.A., Visani, M., Mullot, R.: Unsupervised word spotting using a graph
representation based on invariants. In: Int. Conf. on Doc. Anal. and Rec. (2015)
616–620

13. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image and Vision Computing 27(7) (2009) 950–959

14. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty Years Of Graph Matching In
Pattern Recognition. Int. J. Pattern Rec. Artif. Intell. 18(03) (2004) 265–298

15. Foggia, P., Percannella, G., Vento, M.: Graph Matching and Learning in Pattern
Recognition in the last 10 Years. Int. J. Pattern Rec. Artif. Intell. 28(01) (2014)

16. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition.
Pattern Rec. Letters 1(4) (1983) 245–253

17. Hart, P., Nilsson, N., Raphael, B.: A Formal Basis for the Heuristic Determination
of Minimum Cost Paths. IEEE Trans. on Systems Science and Cybernetics 4(2)
(1968) 100–107

18. Fischer, A., Suen, C.Y., Frinken, V., Riesen, K., Bunke, H.: Approximation of graph
edit distance based on Hausdorff matching. Pattern Rec. 48(2) (2015) 331–343

19. Munkres, J.: Algorithms for the Assignment and Transportation Problems. J. of
the Society for Industrial and Applied Mathematics 5(1) (1957) 32–38

20. Fischer, A., Indermühle, E., Bunke, H., Viehhauser, G., Stolz, M.: Ground truth
creation for handwriting recognition in historical documents. In: Int. W. on Doc.
Anal. Systems, New York, New York, USA (2010) 3–10

21. Hull, J.: Document image skew detection: Survey and annotated bibliography. In:
Series in Machine Perception and Artif. Intell. Volume 29. (1998) 40–64

22. Guo, Z., Hall, R.W.: Parallel thinning with two-subiteration algorithms. Communi-
cations of the ACM 32(3) (1989) 359–373

23. Rath, T.M., Manmatha, R.: Word spotting for historical documents. Int. J. of Doc.
Anal. and Rec. 9(2-4) (2007) 139–152

24. Fischer, A., Keller, A., Frinken, V., Bunke, H.: Lexicon-free handwritten word
spotting using character HMMs. Pattern Rec. Letters 33(7) (2012) 934–942


