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Abstract. The present paper is concerned with a graph-based system
for Keyword Spotting (KWS) in historical documents. This particular
system operates on segmented words that are in turn represented as
graphs. The basic KWS process employs the cubic-time bipartite match-
ing algorithm (BP). Yet, even though this graph matching procedure is
relatively efficient, the computation time is a limiting factor for processing
large volumes of historical manuscripts. In order to speed up our frame-
work, we propose a novel fast rejection heuristic. This heuristic compares
the node distribution of the query graph and the document graph in a
polar coordinate system. This comparison can be accomplished in linear
time. If the node distributions are similar enough, the BP matching is
actually carried out (otherwise the document graph is rejected). In an
experimental evaluation on two benchmark datasets we show that about
50% or more of the matchings can be omitted with this procedure while
the KWS accuracy is not negatively affected.

Keywords: Handwritten Keyword Spotting, Bipartite Graph Matching,
Fast Rejection, Filtering Graph Matching

1 Introduction

An automatic full transcriptions of historical handwritten documents is often
negatively affected by both the degenerative conservation state of scanned docu-
ments and different writing styles. Thus, Keyword Spotting (KWS) as a more
error-tolerant, flexible, and suitable approach has been proposed [1–4]. KWS
refers to the task of retrieving any instance of a given query word in a document.
This task is of high relevance due to a global trend towards digitalisation of
paper-based archives and libraries. Similar to handwriting recognition, textual
KWS can be divided into two different approaches online and offline KWS,
respectively. The former has access to temporal information, while the latter
is limited to spatial information only. The focus of this paper is on historical



2 M. Stauffer et al.

documents, and thus, offline KWS, referred to as KWS from now on, can be
applied only.

KWS approaches can be divided into template-based or learning-based al-
gorithms. Template-based matching algorithms such as for example Dynamic
Time Warping (DTW) [2, 5, 6] directly match sample images of the keyword
with document images. Learning-based algorithms [3, 4, 7], on the other hand,
derive character or word models from learning samples. The latter typically
achieve higher accuracies than template-based approaches but are limited by the
need for a considerable amount of learning samples. Template-based approaches,
in contrast, require only one or a few keyword instances and are thus more
flexible. In this paper, we focus on template-based KWS using different graph
representations of handwritten words.

Even though graphs gained noticeable attention in diverse applications [8, 9],
we observe only limited attempts where graphs are used to represent handwriting
for KWS [10–14]. This is particularly interesting as graphs are, in contrast with
feature vectors, flexible enough to adapt their size to the size and complexity of
the underlying handwriting. Moreover, graphs are capable to represent binary
relationships in the handwriting (e.g. strokes between two keypoints). Overall,
graphs offer a more natural and comprehensive way to represent handwritten
characters or words when compared to feature vectors. Additionally, various
procedure for efficiently evaluating the dissimilarity of graphs, commonly known
as graph matching, have been proposed in the last decade [9].

Yet, in the case of searching n keywords in a certain document (represented
by a set of graphs G), we need to match n × |G| pairs of graphs. Even when
a fast graph matching procedure is employed, this large amount of matchings
can substantially slow down the complete KWS process. To speed up the KWS
procedure the number of graph matchings actually carried out, can be reduced
by efficiently filtering graphs from G with a low similarity to the current query
graph q. This approach is known as fast rejection [3, 5, 7] and the focus of the
present paper. That is, we introduce a novel heuristic for fast and accurate
filtering of irrelevant document graphs given a certain query graph.

The remainder of this paper is organised as follows. In Section 2, the proposed
fast rejection approach to speed up graph-based KWS is introduced. The datasets
employed as well as the different graph representations are reviewed in Section 3.
An experimental evaluation and comparison with the original framework is given
in Section 4. Finally, Section 5 concludes the paper and outlines possible future
research activities.

2 Fast Rejection of Document Graphs

Given a set of document graphs G = {g1, . . . , gN} as well as query graph q (used
to represent a certain keyword), the process of KWS performs a matching of q with
all graphs from G. We employ the Bipartite Graph Edit Distance (BP) [15], and
thus observe cubic time complexity for these pairwise dissimilarity computations.
The present paper introduces a fast rejection approach in order to substantially
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reduce the number of document graphs needed to be matched with q. The
motivation is to filter document graphs without relevance to the given keyword
and thus speeding up the KWS procedure without negatively affecting the
retrieval accuracy.

The basic idea of our approach is as follows. Before actually carrying out
the graph matching, we first measure the dissimilarity between histograms
based on a specific segmentation of the graphs by means of a polar coordinate
system. We denote this fast graph dissimilarity computation by Polar Graph
Dissimilarity (PGD) from now on. If the PGD is below a certain threshold D
for a pair of graphs (q, gi), we carry out the computationally more expensive BP
matching procedure [13]. Otherwise, we define the distance between q and gi to
be ∞. Formally,

d(q, gi)

{
∞, if PGD(q, gi) > D

BP (q, gi), otherwise
, (1)

where q and gi denotes the query and document graph, respectively. Increasing
the threshold D generally reduces the number of filtered document graphs.
Likewise, the number of filtered graphs is increased when D is decreased. The
overall aim is to find a good tradeoff between low matching time (due to many
filterings) and high KWS accuracy.

Our novel dissimilarity model PGD has been inspired by the scale-invariant
shape descriptor Contour Points Distribution Histogram (CPDH) for 2D-shape
matching [16]. The basic idea behind this shape descriptor is to segment equidis-
tant contour points by a specific polar coordinate system. A given shape image
is formally described by a histogram CPDH = {h1, . . . , hi, . . . , hn} where hi ba-
sically consists of the number of contour points ni in the corresponding segment.

We adopt this procedure in order to measure the dissimilarity between graphs
in linear time. Rather than contour points, however, we make use of nodes as
shown in Fig. 1. For all of our graphs that represent segmented words, nodes are
labelled with two-dimensional numerical labels, while edges remain unlabelled (see
Section 3 for details).

To create a histogram for a given graph g, we first calculate the centre of
mass (xm, ym) of g and then transform the (x, y)-coordinates of each node label
µ(v) = (x, y) ∈ R2 into polar coordinates (see Fig. 1a)5. Formally,

ρ =
√

(x− xm)2 + (y − ym)2 and θi = atan2((y − ym)/(x− xm)) ,

where ρ denotes the radius from the centre of g to the node position and
−π ≤ θi < π refers to the angle from the x-axis to the node position (computed via
arctangent function with two arguments in order to return the correct quadrant).
Next, we define a bounding circle C given by the maximum radius ρmax that
surrounds all nodes of graph g. We segment C based on the number of different

5 Node coordinates are a priori denormalised by the standard deviation of all node
coordinates, for further details we refer to [13].
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Fig. 1: Construction of the Polar Graph Dissimilarity.

radii umax and angles vmax into umax×vmax bins (in Fig. 1b umax = 3 and vmax = 8
resulting in 24 bins). Every bin bi is defined by two radii ρimin

and ρimax
, and two

angles θimin
and θimax

, and thus every node v ∈ V with coordinates (ρ, θ) can be
assigned to the corresponding bin bi with ρimin ≤ ρ < ρimax and θimin ≤ θ < θimax .
Finally, we count the number of nodes of g in each bin and build a corresponding
histogram H = {h1, . . . , hn} for graph g (see Fig. 1c). To measure the dissimilarity
between two histograms H1 and H2, an arsenal of different distance measures
have been proposed [17]. In the present paper, we make use of the χ2 distance.

We further refine the computation of our fast graph dissimilarity computation
by implementing a recursive quadtree segmentation. The idea is formalised
in Algorithm 1. First, the procedure is initialised by an external call with
l = 1 (i.e. PGD(1, g1, g2)). On the basis of two graphs g1 and g2, the histograms
H1 and H2 are created with respect to umax and vmax (see line 2 of Algorithm 1)6.
Next, the χ2-distance between the two histograms is measured (see line 2). If the
current recursion level l is equal to the maximal recursion depth r, the distance is
returned (see lines 4 and 5). Otherwise, both graphs g1 and g2 are segmented into
four independent subgraphs. Each of these subgraphs represent the nodes and
edges in one of the four quadrants in circle C (see line 6). Eventually, for each
subgraph pair, the PGD is measured by means of a recursive function call (see
line 7). This procedure is repeated until the current recursion level l is equal to
the user-defined maximum depth r.

3 Handwriting Graphs

Our novel algorithm for fast rejection is evaluated in the context of KWS on two
different manuscripts. First, the George Washington (GW) letters that are written
in English and consist of twenty pages with a total of 4,894 words stemming from

6 Note that umax and vmax can be defined for every recursion level separately.
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Algorithm 1 Polar Graph Dissimilarity (PGD)

Input: Graphs g1 and g2, number of radii and segments umax and vmax, recursion depth r
Output: Polar graph dissimilarity between graph g1 and g2
1: function PGD(l, g1, g2)
2: Create H1 based on g1, umax, vmax, and H2 based on g2, umax, vmax

3: Calculate χ2-distance d(H1, H2)
4: if l equal r then
5: return d
6: Segment g1 and g2 based on quadtree to g11 , g12 , g13 , g14 and g21 , g22 , g23 , g24

7: return (
4∑

i=1
PGD(l + 1, g1i , g2i )) + d

handwritten letters with only minor writing variations and signs of degradation7.
Second, the Parzival (PAR) manuscript that is written in Middle High German
and consists of 45 pages with a total of 23,478 words stemming from handwritten
letters with low writing variations but markable signs of degradation8.

We extract graphs from segmented words of both documents by means of the
following four graph extraction algorithms (originally presented in [14]).

– Keypoint: The first graph extraction algorithm makes use of keypoints in
the word images such as start, end, and junction points. These keypoints
are represented as nodes that are labelled with the corresponding (x, y)-
coordinates. Between pairs of keypoints further intermediate points are
converted to nodes and added to the graph in equidistant intervals. Finally,
undirected edges are inserted into the graph for each pair of nodes that is
directly connected by a stroke.

– Grid: The second graph extraction algorithm is based on a grid-wise seg-
mentation of the word images. For every segment, a node is inserted into
the graph and labelled by the (x, y)-coordinates of the centre of mass of this
segment. Undirected edges are inserted between two neighbouring segments
that are actually represented by a node. Eventually, the inserted edges are
reduced by means of a Minimal Spanning Tree algorithm.

– Projection: The next graph extraction algorithm works very similar to Grid.
However, this methods is based on an adaptive segmentation of word images
by means of projection profiles (using horizontal and vertical projection
profiles).

– Split: The last graph extraction algorithm is based on an iterative segmenta-
tion of word images. Segments are iteratively split into smaller subsegments
until the width and height of all segments is below a certain threshold.

The dynamic range of the (x, y)-coordinates of each node label µ(v) is nor-
malised with a z-score. Formally,

7 George Washington Papers at the Library of Congress, 1741-1799: Series 2, Letterbook
1, pp. 270-279 & 300-309, http://memory.loc.gov/ammem/gwhtml/gwseries2.html

8 Parzival at IAM historical document database, http://www.fki.inf.unibe.ch/

databases/iam-historical-document-database/parzival-database
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x̂ =
x− µx
σx

and ŷ =
y − µy
σy

, (2)

where (µx, µy) and (σx, σy) represent the mean and standard deviation of all
(x, y)-coordinates in the graph under consideration.

On the resulting sets of word graphs, ten different keywords are manually
selected on both datasets to optimise several system parameters (see Section 4.2).
For validation these keywords are matched against a validation set that consists
of 1,000 different random words including at least 10 instances of all 10 keywords.
The optimised systems are eventually evaluated on the same training and test
sets as used in [4]. All templates of a keyword present in the training set are used
for KWS. In Table 1 a summary of the datasets is given.

Table 1: The number of keywords as well as the size of the training and test sets
for both documents.

Dataset Keywords Train Test

GW 105 2,447 1,224
PAR 1,217 11,468 6,869

4 Experimental Evaluation

4.1 Basic KWS Systems

For evaluating our proposed fast rejection heuristic, we consider the graph-based
KWS system introduced in [13] and the four types of handwriting graphs described
in Section 3. The original KWS system [13] is termed BP from now on, while
our extended model with fast rejection is termed BP-FR.

To evaluate the KWS performance, two different metrics are used for global
and local thresholds. In the case of global thresholds, the Average Precision (AP)
is measured, which is the area under the Recall-Precision curve for all keywords
given a single (global) threshold. In the case of local thresholds, we compute the
Mean Average Precision (MAP), that is the mean of all APs for each individual
keyword query. To measure the effects of our fast rejection filter, we compute the
relative amount of pairwise matchings that is filtered by BP-FR (termed Filter
Rate (FR) from now on).

4.2 Optimisation of the Parameters

For the basic KWS system BP and the four graph representations, we adopt
parameters from previous work [13,14]. For our extension BP-FR the following
parameters are additionally optimised on the validation set.
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First, the parameters of PGD are optimised with respect to MAP. That is,
we employ PGD (rather than BP) as basic matching procedure in our KWS
framework. On the validation set different polar segmentations (defined via
umax and vmax) are tested for two recursion levels (i.e. we define the maximal
recursion depth to r = 2). For l = 1, the parameter combinations umax =
{1, 2, 3, 4, 5, 6}× vmax = {4, 8, 12, 16, 20, 24, 28, 32, 36, 40} are evaluated, while for
l = 2 the parameter combinations umax = {1, 2, 3, 4} × vmax = {2, 4, 6, 8, 10} are
tested. Hence, we evaluate 6× 10× 4× 5 = 1,200 parameter combinations for
every graph extraction method. In Table 2 the best performing parameters are
presented for every graph extraction method and both datasets.

Table 2: Optimal umax and vmax for PGD on both recursion levels l.

GW PAR

l = 1 l = 2 l = 1 l = 2

Method umax vmax umax vmax umax vmax umax vmax

Keypoint 4 12 1 6 3 20 2 6
Grid 5 24 1 4 4 20 1 6
Projection 5 16 1 4 3 36 3 4
Split 4 20 1 4 3 40 2 6

For fast rejection in our extension BP-FR we evaluate different thresholds
D = {5, 10, . . . , 195, 200}. In Fig. 2, the MAP and FR are shown for every tested
threshold D. By increasing D we observe that the KWS performance is improved
in general. Simultaneously, the number of filtered graphs is decreasing (making
the KWS process slower in general). Threshold D is finally determined such that
the MAP is maximal (or not further improved, when D is increased). In Table 3
the selected threshold D is given for each graph extraction method and both
datasets.
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Fig. 2: Mean average precision (MAP) and filter rate (FR) as function of the
threshold D.
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Table 3: Optimal D for BP-FR and corresponding filter rate (FR).

GW PAR

Method D MAP FR D MAP FR

Keypoint 100 82.8 61.1 95 91.7 71.5
Grid 165 75.6 46.0 70 86.5 85.6
Projection 115 80.7 56.9 130 92.2 70.9
Split 155 76.4 44.6 145 90.9 57.5

4.3 Results and Discussion

We compare the optimised system BP-FR on the independent test sets with the
original KWS framework BP [13] (without fast rejection). In Table 4 the mean
average precision (MAP) for local thresholds, the average precision (AP) for global
thresholds, as well as the filter rate (FR) is given for both BP and BP-FR. On the
GW dataset we observe a filter rate between 50% and 70% (i.e. only 50% to 30%
of all comparisons have to be carried out by the bipartite matching algorithm).
Due to this filtering, we decrease the computation time of the complete KWS
experiment by about 80 to 150 hours on the different graph representations.
Similar (or even better) filter rates can be observed on the second dataset9.

Table 4: Mean average precision (MAP) using local thresholds, average preci-
sion (AP) using a global threshold, and filter rate (FR) for KWS using the
original bipartite graph matching without rejection (BP) and with the proposed
fast rejection (BP-FR). With ± we indicate the relative percental gain or loss in
the accuracy of BP-FR when compared with BP.

GW PAR

Method MAP ± AP ± FR MAP ± AP ± FR

B
P

Keypoint 66.08 54.99 0.00 62.04 60.74 0.00
Grid 60.02 46.44 0.00 56.50 44.08 0.00
Projection 61.43 48.69 0.00 66.23 60.61 0.00
Split 60.23 47.96 0.00 59.44 55.46 0.00

B
P
-F

R

Keypoint 68.81 +4.12 55.68 +1.25 69.04 67.70 +9.12 58.03 −4.46 58.72
Grid 62.59 +4.27 47.48 +2.23 54.65 63.41 +12.23 38.59 −12.45 78.71
Projection 64.65 +5.25 50.41 +3.53 61.04 72.02 +8.74 55.83 −7.89 58.10
Split 63.49 +5.41 46.95 −2.11 47.70 65.65 +10.45 56.97 +2.72 39.24

Regarding the effects of our fast filtering on the KWS performance, we observe
that the MAP is not negatively affected on both datasets. On the contrary, the

9 Actually, we carry out our experiment on a high performance computing cluster
with dozens of CPU nodes. Hence, these readings are approximated by means of the
average matching time per keyword measured on the validation set in a sequential
scenario.
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filtering of irrelevant documents via PGD actually improves the MAP by about
5% and 10% on the GW and PAR dataset, respectively.

Regarding the AP (employed for global rather than local thresholds), we
observe both deteriorations and improvements of BP-FR when compared with
the original framework. Yet, most of the deviations are negligible. In particular
on the GW dataset only small differences are observed on the resulting APs. On
PAR we observe two substantial deteriorations of the AP. Yet, in these two cases
we observe very high filter rates of about 60% and 70%.

Regarding the results in Table 4 the question arises whether the novel graph
dissimilarity PGD would be able to achieve a competitive KWS accuracy. In
order to answer this question, we employ the optimised PGD (rather than the
bipartite matching) in the original KWS framework. In Table 5, the MAP and
AP of this particular KWS system is shown on the Keypoint graphs (for the
other graphs similar results are obtained). We observe that this system achieves
worse results than BP on both datasets (regarding both MAP and AP). Hence,
we conclude that PGD itself is not powerful enough to serve as basic dissimilarity
model for graph-based KWS. Yet, as seen in the previous evaluation in Table 4,
the PGD as fast rejection criterion in conjunction with BP is clearly beneficial.

Table 5: Mean average precision (MAP) using local thresholds, average preci-
sion (AP) using a global threshold for KWS using the original bipartite graph
matching (BP), and the polar graph dissimilarity (PGD) on the Keypoint graphs.

GW PAR

MAP AP MAP AP

BP 66.08 54.99 62.04 60.74

PGD 58.54 44.77 42.65 31.63

5 Conclusion and Outlook

In the present paper a fast rejection approach for graph-based KWS is introduced.
The rejection is based on a novel graph dissimilarity model, which compares the
histograms of the node distributions in a polar coordinate system.

We compare our extended model with the original KWS framework without
rejection ability on two benchmark datasets. We observe that our novel rejection
approach reduces the amount of graph matchings by 50% or more on both
datasets (in fact, filter rates of up to 80% are observed). Our rejection criterion
is computed in linear time, while the actual graph matching needs cubic time.
Hence, a dramatic speed up of the complete KWS process is achieved. Moreover,
we can conclude that our novel extension for speeding up the existing KWS
framework does not negatively influence the spotting accuracy.

In future work we aim at extending our novel graph dissimilarity model. For
instance, we could consider not only nodes but also edges in the histograms.
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