
Speeding-Up Graph-based Keyword Spotting by
Quadtree Segmentations

Michael Stauffer1,4, Andreas Fischer2,3, and Kaspar Riesen1

1 University of Applied Sciences and Arts Northwestern Switzerland,
Institute for Information Systems, Riggenbachstr. 16, 4600 Olten, Switzerland

{michael.stauffer,kaspar.riesen}@fhnw.ch
2 University of Fribourg, Department of Informatics, 1700 Fribourg, Switzerland

andreas.fischer@unifr.ch
3 University of Applied Sciences and Arts Western Switzerland,

Institute for Complex Systems, 1705 Fribourg, Switzerland
4 University of Pretoria, Department of Informatics, Pretoria, South Africa

Abstract. Keyword Spotting (KWS) improves the accessibility to hand-
written historical documents by unconstrained retrievals of keywords. The
proposed KWS framework operates on segmented words that are in turn
represented as graphs. The actual KWS process is based on matching
graphs by means of a cubic-time graph matching algorithm. Although
this matching algorithm is quite efficient, the polynomial time complexity
might still be a limiting factor (especially in case of large documents).
The present paper introduces a novel approach that aims at speeding up
the retrieval process. The basic idea is to first segment individual graphs
into smaller subgraphs by means of a quadtree procedure. Eventually,
the graph matching procedure can be conducted on the resulting pairs
of smaller subgraphs. In an experimental evaluation on two benchmark
datasets we empirically confirm substantial speed-ups while the KWS
accuracy is nearly not affected.

Keywords: Handwritten Keyword Spotting, Bipartite Graph Matching,
Quadtree Graph Segmentation

1 Introduction

In the last decades, handwritten historical documents have been made increasingly
digitally available around the world. Example documents are the Barcelona
marriage registry [1], the Saint Gall manuscript [2] or the George Washington
letters [3], to mention just a few. Yet, the accessibility to these documents
with respect to browsing and searching is still an issue since automatic full
transcriptions are often not feasible. Thus, Keyword Spotting (KWS) as an
alternative to transcriptions has been proposed for this type of document [3–6].
KWS allows to retrieve any instances of a given keyword in a certain document.
In case of historical documents, KWS is limited to document images only and is
thus an offline task. Generally, offline KWS is regarded as the more difficult case

2 M. Stauffer et al.

when compared to online KWS, where temporal information about the writing
process is available as well.

KWS approaches can be roughly distinguished into template-based or learning-
based algorithms. In the case of template-based KWS, handwritten words are often
represented by sequences of feature vectors used to store certain characteristics of
the handwriting. A query word can then be retrieved in a set of document words
by matching sequences of features vectors, for example by means of dynamic time
warping [5, 7, 8]. Learning-based KWS on the other hand is based on a statistical
model that is trained a priori on a relatively large set of training words [3, 6, 9].
Comparing both approaches with each other, we observe that learning-based
approaches lead to higher accuracies in general, while template-based approaches
are characterised by a higher flexibility (as no training is required). In the
present paper, we focus on template-based KWS using graphs for the formal
representation of words.

In various fields of pattern recognition, graphs have been employed as a
versatile representation formalism [10–12]. Yet, for applications based on KWS,
graphs are rarely used [13–18]. This is somehow surprising as graphs offer a
natural and comprehensive representation for handwritten words. In particular,
graphs are able to adapt both their size and structure to the complexity of the
underlying handwritten words. Moreover, graphs are able to represent binary
relationships that might exists between parts of the handwritten words.

In case of graph-based KWS, the actual spotting process includes matching
a query graph with a set of document graphs (using some graph matching
algorithm [11]). When large amounts of graph matchings are necessary, the
complete KWS process might take too much time, even with fast approximate
matching algorithms (e.g. [16]).

In the present paper, we focus on speeding up the graph-based KWS process
by adapting the actual graph matching procedure. Graphs are first iteratively
segmented into smaller subgraphs by means of a quadtree segmentation. Second,
the graph matching is conducted on corresponding small subgraphs rather than on
the large graphs representing the complete word. The rationale for this procedure
is to substantially speed up the graph matching, as the matching time depends
on the number of nodes of the involved graphs.

The remainder of this paper is organised as follows. In Section 2, the basic
KWS framework for graph-based word representations is reviewed. The actual
speed-up procedure for graph-based KWS is introduced in Section 3 and evaluated
in Section 4. Finally, Section 5 concludes the paper and outlines possible future
research activities.

2 Graph-based Keyword Spotting

The present paper proposes a novel method for speeding up a framework for
graph-based KWS [16]. The basic KWS framework consists of four different
processing steps as illustrated in Fig. 1. In the following four subsections these
four steps are briefly reviewed.

Speeding-Up Graph-based Keyword Spotting by Quadtree Segmentations 3

Document

1) Image
Preprocessing

2) Graph
Representation

3) Graph Matching
for KWS

Words Graphs G Query Graph q 4) Derive
Retrieval Indices

… …

1

2

3

… n

Fig. 1: Process of Graph-based Keyword Spotting of the Word “October”

2.1 Image Preprocessing

For the purpose of evaluation, we employ two historical documents, viz. the
George Washington letters (GW) and the Parzival manuscript (PAR). GW is
based on twenty pages with a total of 4,894 handwritten words5. The letters are
written in English by George Washington and his associates during the American
Revolutionary War in 1755. Variations caused by both degradation and writing
style are low. PAR consists of 45 pages with a total of 23,478 handwritten words6.
The manuscript is written in Middle High German and originates in the 13th
century. Variations caused by degradation are markable, while variations caused
by writing style are low. Two exemplary words are given for both documents in
the first row of Fig. 2.

GW PAR

Keypoint

Projection

Preprocessed

Original

Fig. 2: Different representations of two sample words from both datasets.

The original document images are first preprocessed to reduce variations
caused, for instance, by skew scanning, noisy background, and document degra-
dation. On the basis of preprocessed document images, single word images are

5 George Washington Papers at the Library of Congress, 1741-1799: Series 2, Letterbook
1, pp. 270-279 & 300-309, http://memory.loc.gov/ammem/gwhtml/gwseries2.html

6 Parzival at IAM historical document database, http://www.fki.inf.unibe.ch/

databases/iam-historical-document-database/parzival-database

4 M. Stauffer et al.

automatically segmented by means of their projection profile (and if necessary
manually corrected). In the second row of Fig. 2 we show the result of our
preprocessing on some examples. For details regarding both image preprocessing
and word segmentation we refer to [16].

2.2 Graph Representation

A graph g is generally defined as a four-tuple g = (V,E, µ, ν) where V and E
are finite sets of nodes and edges, and µ : V → LV as well as ν : E → LE
are labelling functions for nodes and edges, respectively. Graphs can be divided
into undirected and directed graphs, where pairs of nodes are either connected
by undirected or directed edges, respectively. Additionally, graphs are often
distinguished into unlabelled and labelled graphs. In the latter case, both nodes
and edges can be labelled with an arbitrary numerical, vectorial, or symbolic
label from Lv or Le, respectively. In the former case we assume empty label
alphabets, i.e. Lv = Le = {}.

The following two graph extraction algorithms (originally presented in [17])
result in graphs where nodes are labelled with two-dimensional numerical labels,
while the undirected edges remain unlabelled, i.e. LV = R2 and LE = {}.

– Keypoint: The first graph extraction algorithm makes use of keypoints in
the word images such as start, end, and junction points. These keypoints
are represented as nodes and labelled with the (x, y)-coordinates of the
corresponding keypoint. Between pairs of keypoints further intermediate
points (in equidistant intervals) are converted to nodes and added to the
graph. Finally, undirected edges are inserted between pairs of nodes that are
directly connected by a stroke.

– Projection: The second graph extraction algorithm is based on an adaptive
segmentation of word images by means of horizontal and vertical projection
profiles. A node is inserted into the graph for every segment and labelled by
the (x, y)-coordinates of the centre of mass of the corresponding segment.
Undirected edges are inserted into the graph for each pair of nodes that is
directly connected by a stroke in the original word image.

In the third and fourth row of Fig. 2 we show the resulting graphs of Keypoint
and Projection, respectively.

For both graph representations, the dynamic range of the (x, y)-coordinates
of each node label µ(v) is normalised with a z-score. Formally,

x̂ =
x− µx
σx

and ŷ =
y − µy
σy

,

where (µx, µy) and (σx, σy) represent the mean and standard deviation of all
(x, y)-coordinates in the graph under consideration.

Speeding-Up Graph-based Keyword Spotting by Quadtree Segmentations 5

2.3 Graph Matching for Keyword Spotting

In our general KWS approach, a query graph q is individually matched with every
graph g from a set of document graphs G = {g1, . . . , gN}. For this particular
task, we focus on inexact graph matching and employ the concept of Graph
Edit Distance (GED) [19]. Note that any other graph matching algorithm could
be used as well. Yet, GED is particularly interesting as it allows matchings of
arbitrary graphs.

Given a query graph q and document graph g ∈ G, the basic principle of graph
edit distance is to transform q into g using some edit operations (i.e. insertions,
deletions, and substitutions) for both nodes and edges. A set {e1, . . . , ek} of k
edit operations ei that transform q completely into g is called an edit path λ(q, g)
between q and g.

To find the most suitable edit path, one commonly introduces a domain-
specific cost function c(e) for every edit operation e. This cost function is used to
measure the degree of deformation of a given edit operation. Given an adequate
cost model, the graph edit distance dGED(q, g), or dGED for short, between q and
g is defined by

dGED(q, g) = min
λ∈Υ (q,g)

∑
ei∈λ

c(ei) ,

where Υ (q, g) denotes the set of all edit paths between q and g.
For the exact computation of dGED, it is common to employ A*-based search

techniques using some heuristics [20,21]. However, these exhaustive search pro-
cedures are exponential with respect to the number of nodes of the involved
graphs. Formally, GED belongs to the family of Quadratic Assignment Prob-
lems (QAPs) [22], which in turn belong to the class of NP-complete problems.

In order to overcome this limitation, we make use of an approximation
algorithm for the computation of GED [23]. This method basically reduces the
problem of GED computation to an instance of the Linear Sum Assignment
Problem (LSAP). Both QAPs and LSAPs deal with the optimal alignment of
entities of two sets. Yet, by encoding the GED problem as an LSAP, we have to
neglect the global edge structures of the graphs. This actually leads to a general
overestimation of the true GED. However, with this transformation, we benefit
from the polynomial complexity of LSAPs (see [24] for an exhaustive survey on
LSAP solving algorithms). For the remainder of this paper, we make use of this
graph matching algorithm and name the corresponding suboptimal graph edit
distance dBP(q, g), or dBP for short7.

2.4 Derive Retrieval Indices

Our approach for keyword spotting relies on retrieval indices which are based on
the suboptimal graph edit distance dBP. We define retrieval indices for both local
and global threshold scenarios. In case of local thresholds, the KWS accuracy is

7 BP stand for bipartite (LSAPs are also termed bipartite matching problem).

6 M. Stauffer et al.

independently measured for every keyword, while in case of global thresholds,
the KWS accuracy is measured for every keyword with one single threshold.

In both scenarios, dBP is first normalised by the sum of the maximum cost
edit path between q and g, i.e. the sum of the edit path that results from deleting
all nodes and edges of q and inserting all nodes and edges in g. Formally,

d̂BP(q, g) =
dBP(q, g)

(|Vq|+ |Vk|) τv + (|Eq|+ |Eg|) τe
,

where τv and τe denote the node and edge insertion/deletion costs. In case a
query consists of a set of graphs {q1, . . . , qt} that represents the same keyword,

the normalised graph edit distance d̂BP is given by the minimal distance achieved
on all t query graphs. This normalised graph edit distance is used to derive a
first retrieval index for local thresholds by

r1(q, g) = −d̂BP(q, g) .

To derive a retrieval index for global thresholds, d̂BP is further normalised
by using the average distance of a query graph q to its k nearest document
graphs, i.e. the document graphs {g(1), . . . , g(k)} with smallest distance values to
q. Formally, we use

d̄k(q) =
1

k

k∑
i=1

d̂BP(q, g(i)) ,

to derive

ˆ̂
dBP(q, g) =

d̂BP(q, g)

d̄k(q)
.

Finally, the distance
ˆ̂
dBP is used to derive the retrieval index for global

thresholds by

r2(q, g) = − ˆ̂
dBP(q, g) .

Rather than defining k as a constant, we dynamically adapt k for every query
graph q. In particular, k is defined such that the distance dBP(q, g(k)) of q to its
k-th nearest document graph g(k) is equal to

d̄m(q) + θ (d̄N (q)− d̄m(q)) ,

where m and θ are user defined parameters and N refers to the number of
document graphs. The value of d̄m(q) refers to the mean distance of q to its m
nearest neighbours and d̄N (q) refers to the mean distance to all document graphs
available. This sum reflects the level of the dissimilarities of q to the graphs in
its direct neighbourhood. If the sum is large, k is automatically defined large,

too. This in turn increases d̄k(q), which ultimately increases the scaling to
ˆ̂
dBP.

Speeding-Up Graph-based Keyword Spotting by Quadtree Segmentations 7

3 Speeding-Up the Graph Matching

The contribution of the present paper is a novel method that aims at faster
computations of pairwise graph dissimilarities. That is, we focus on reducing the
time for computing dBP. Basically, rather than matching complete graphs, we
first apply a quadtree segmentation to individual graphs. Next, we match the
small subgraphs (corresponding to each other w.r.t. the segmentation) and sum
up the individual matching costs. This procedure might substantially speed up
the graph matching procedure as the complexity of the graph matching algorithm
is a cubic function of the number of nodes of the involved graphs.

The graph segmentation is carried out as follows. First, the bounding box
surrounding a graph g is segmented at the Centre of Mass (xm, ym) into four
segments as illustrated in Fig. 3a. To make this segmentation more robust against
variations in the underlying graphs, we overlap each segment depending on a
user defined factor α ∈]0, 1[. Parameter α defines the overlap of a segment to its
neighbouring segments with respect to width and height of the corresponding
segment. That is, for α = 0.10, for instance, the overlapping region is 10% of the
size of the corresponding segment. For each of the resulting segments one subgraph
is created that includes all nodes (and edges) of the the corresponding segment.
Hence, we obtain four (not necessarily disjoint) subgraphs. These subgraphs are
iteratively segmented at their corresponding centre of mass into further subgraphs
until the recursion level l is equal to a maximum recursion depth r > 0 (defined
by the user). This procedure is illustrated in Fig. 3b and 3c.

The actual procedure for computing a dissimilarity between two graphs g
and g′ using the proposed segmentation is formalised in Algorithm 1 (termed
Quadtree Graph Matching). The proposed procedure is initialised by an external
call with recursion level l = 1, i.e. BPQ(1, g, g′). First, both graphs g and g′

are segmented into four subgraphs with the procedure described above. Each
of these subgraphs represent the nodes and edges in one of the four segments
under consideration (with a relative overlap of α) (see line 2 of Algorithm 1).
Eventually, the sum of the four bipartite graph edit distances computed on the
corresponding four subgraphs is built (see line 3). Finally, the subgraph pairs
are further segmented by means of a recursive function call of BPQ (see line
6). This procedure is repeated until the current recursion level l is equal to the
user-defined maximum depth r (see line 4 and 5).

Algorithm 1 Quadtree Graph Matching

Input: Graphs g and g′, overlap factor α, maximum recursion depth r > 0
Output: Graph distance dBPQ

between graph g and g′

1: function BPQ(l, g, g′)
2: Quadtree segment g and g′ to g1, g2, g3, g4 and g′1, g

′
2, g

′
3, g

′
4

3: dBPQ
=

4∑
i=1

dBP(gi,g
′
i
)

4: if l equal r then
5: return dBPQ

6: return dBPQ
+

(
4∑

i=1
BPQ(l + 1, gi, g

′
i)

)

8 M. Stauffer et al.

↵

↵

(xm, ym)

(a) Recursion Level l = 1 with Centre of Mass (xm, ym) and Overlap Factor α

g1 g2

g4 g3

(b) Recursion Level l = 1 with Subgraphs g1 (highlighted), g2, g3, and g4

(xm1 , ym1)
(xm2 , ym2)

(xm3 , ym3)(xm4 , ym4)

(c) Recursion Level l = 2 with Centres of Mass (xm1 , ym1) , . . . , (xm4 , ym4)

Fig. 3: Quadtree Graph Segmentation.

4 Experimental Evaluation

The proposed speed-up procedure of quadtree segmentation (termed BP-Q from
now on) is compared with two reference systems. First, we use the original KWS
framework presented in [16] (termed BP from now on). Second, we use BP in
conjunction with a fast rejection procedure recently proposed in [18] (termed
BP-FR from now on). BP-FR also aims at speeding up the KWS process. Yet,
this approach is based on a reduction of the number of graph matchings. In
particular, pairs of query and document graphs are first compared with respect
to their node distributions in a polar coordinate system. If these distributions
are similar enough, the graph matching is actually carried out (otherwise the
document graph is rejected without further computations).

In the following subsection, the optimisation of the proposed KWS system is
described. Eventually, the results are presented and discussed in Subsection 4.2.

4.1 Optimisation of the Parameters

For the optimisation of the KWS framework, we manually select ten different key-
words (with different word lengths) on both datasets (GW and PAR). Moreover,
a validation set is defined consisting of 1,000 different random words including
at least ten instances of all ten keyword instances. The KWS experiments are
finally conducted with optimised parameter settings on the same training and

Speeding-Up Graph-based Keyword Spotting by Quadtree Segmentations 9

test sets as proposed in [3]. In Table 1, the number of keywords, as well as the
size of the training- and test set are shown for both datasets.

Table 1: Number of keywords as well as the size of the training and test set for
both benchmark datasets.

Dataset Keywords Train Test

GW 105 2,447 1,224
PAR 1,217 11,468 6,869

In case of global thresholds, the accuracy of KWS systems is often measured
by the Average Precision (AP), which is the area under the Recall-Precision (RP)
curve for all keywords given one single global threshold. In case of local thresholds,
the KWS accuracy is commonly measured by the Mean Average Precision (MAP),
that is the mean over the AP of each individual keyword query. In a real-world
scenario, global thresholds are regarded as the more realistic but also more
difficult case.

The optimal parameters for the KWS system BP, the fast rejection method
BP-FR, as well as the two graph extraction methods Keypoint and Projection

are adopted from previous works [16–18]. The parameters of the quadtree segmen-
tation, i.e. the maximum recursion depth l and the overlap factor α, are optimised
as follows. We evaluate five maximum recursion depths r ∈ {1, 2, 3, 4, 5} in com-
bination with 20 overlap factors α ∈ {0.01, 0.02, . . . , 0.20}. On both datasets
and for both extraction methods a maximum recursion depth of 1 turns out
to be optimal. On PAR an overlap factor α of 0.01 is optimal for both graph
representations, while on GW α = 0.01 and α = 0.02 is optimal for Keypoint

and Projection, respectively.

The retrieval index r2 is optimised for the scenario with global thresholds. In
particular, parameter m and threshold scaling factor θ are optimised. To this
end, we evaluate 2,000 parameter pairs (m, θ) with m = {10, 20, . . . , 990, 1000}
and θ = {0.01, 0.02, . . . , 0.19, 0.20}. In Table 2, the optimal parameter settings
for r2 are given for both graph extraction methods and benchmark datasets.

Table 2: Optimal parameters m and θ for retrieval index r2 for both graph
extraction methods and benchmark datasets.

GW PAR

Method m θ m θ

Keypoint 70 0.01 950 0.20
Projection 60 0.02 1,000 0.20

10 M. Stauffer et al.

4.2 Results and Discussion

In Table 3, the MAP and AP for local and global threshold scenarios are given
for all three KWS systems, i.e. the original framework BP [16, 17], the BP
framework with fast rejection BP-FR [18], as well as our novel procedure BP-Q.
Additionally, we indicate the speed-up factor8 as well as the relative gain or loss
of the KWS accuracy of both speed-up approaches when compared with the
original system BP.

Table 3: Mean average precision (MAP) using local thresholds, average preci-
sion (AP) using a global threshold, and speed-up factor (SF) for KWS using the
original bipartite graph matching without rejection (BP), with fast rejection (BP-
FR), and with quadtree segmentation (BP-Q). With ± we indicate the relative
percental gain or loss in the accuracy of BP-FR and BP-Q when compared with
BP.

GW PAR

Method MAP ± AP ± SF MAP ± AP ± SF

B
P

Keypoint 66.08 55.22 62.04 60.76
Projection 61.43 49.34 66.23 62.38

B
P
-F

R Keypoint 68.81 +4.1 54.10 −2.0 3.2 67.70 +9.1 63.01 +3.7 2.4
Projection 64.65 +5.2 48.94 −0.8 2.6 72.02 +8.7 63.49 +1.8 2.3

B
P
-Q Keypoint 65.92 −0.2 54.91 −0.6 17.1 56.83 −8.4 54.66 −10.0 21.2

Projection 59.57 −3.0 48.13 −2.5 15.0 64.62 −2.4 61.72 −1.1 21.5

When compared to BP, the proposed method BP-Q achieves speed-up factors
of about 15-17 and 21 on GW and PAR, respectively. This refers to a substantial
improvement of the performance, especially as the previous method for speeding
up the KWS process (BP-FR) leads to speed-up factors of about 2 to 3 only.
However, for both datasets and both threshold scenarios an accuracy loss has to
be taken into account with BP-Q, while BP-FR outperforms BP in three out of
four cases. Yet, this deterioration of BP-Q in the KWS accuracy is negligible. In
particular, when we consider the results of Keypoint on GW and Projection on
PAR (where the relative loss of accuracy is lower than 1% and 2.5%, respectively).
Hence, we can summarise that BP-Q achieves comparable results as BP but
needs about 20 times less computation time for KWS.

8 We carry out our experiments on a high performance computing cluster with dozens
of 2.2GHz CPU nodes. Hence, these readings refer to the average matching time per
keyword measured in a sequential scenario.

Speeding-Up Graph-based Keyword Spotting by Quadtree Segmentations 11

5 Conclusion and Outlook

In the present paper a procedure for speeding up graph-based keyword spotting is
presented. The basic idea is to iteratively segment graphs into smaller subgraphs
by means of a quadtree segmentation. These small subgraphs, rather than
complete graphs, are eventually matched during the KWS process. The motivation
for this procedure is to decrease the runtime of the KWS process. This is actually
reasonable as the time complexity of the employed graph matching algorithm is
a cubic function of the number of nodes of the involved graphs.

We compare the proposed speed-up procedure BP-Q with the original frame-
work BP and a recent fast rejection method BP-FR on two different benchmark
datasets. On both datasets, BP-Q achieves remarkable speed-up factors of 15
to 21 when compared with BP (BP-FR leads to substantially smaller speed-up
factors of 2 to 3). However, these performance improvements are accomplished
with a marginal loss in accuracy when compared with BP.

In future work we aim at combining both speed-up approaches BP-Q and
BP-FR to further speed up the KWS process. That is, graphs might be first
filtered by the fast rejection method [18] and eventually segmented and matched
by means of the quadtree graph matching procedure. Moreover, we see great
potential in applying our fast matching procedure in other fields of graph-based
pattern recognition. Last but not least, it would be interesting to employ our
general method in a parallelised computation scenario.

Acknowledgments. This work has been supported by the Hasler Foundation
Switzerland.

References

1. Fernandez-Mota, D., Almazan, J., Cirera, N., Fornes, A., Llados, J.: BH2M: The
Barcelona Historical, Handwritten Marriages Database. In: International Conference
on Pattern Recognition. (2014) 256–261

2. Fischer, A., Frinken, V., Fornés, A., Bunke, H.: Transcription alignment of Latin
manuscripts using hidden Markov models. In: Workshop on Historical Document
Imaging and Processing, New York, New York, USA (2011) 29

3. Fischer, A., Keller, A., Frinken, V., Bunke, H.: Lexicon-free handwritten word
spotting using character HMMs. Pattern Recognition Letters 33(7) (2012) 934–942

4. Manmatha, R., Chengfeng Han, Riseman, E.: Word spotting: a new approach
to indexing handwriting. In: Computer Vision and Pattern Recognition. (1996)
631–637

5. Rath, T., Manmatha, R.: Word image matching using dynamic time warping. In:
Computer Vision and Pattern Recognition. Volume 2. (2003) II–521–II–527

6. Rodŕıguez-Serrano, J.A., Perronnin, F.: Handwritten word-spotting using hidden
Markov models and universal vocabularies. Pattern Recognition 42(9) (2009)
2106–2116

7. Rodriguez, J.A., Perronnin, F.: Local gradient histogram features for word spotting
in unconstrained handwritten documents. In: International Conference on Frontiers
in Handwriting Recognition. (2008) 7–12

12 M. Stauffer et al.

8. Rodŕıguez-Serrano, J.A., Perronnin, F.: A model-based sequence similarity with
application to handwritten word spotting. IEEE Transactions on Pattern Analysis
and Machine Intelligence 34(11) (2012) 2108–20

9. Perronnin, F., Rodriguez-Serrano, J.A.: Fisher Kernels for Handwritten Word-
spotting. In: International Conference on Document Analysis and Recognition.
(2009) 106–110

10. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty Years Of Graph Matching In
Pattern Recognition. International Journal of Pattern Recognition and Artificial
Intelligence 18(03) (2004) 265–298

11. Riesen, K.: Structural Pattern Recognition with Graph Edit Distance. Advances
in Computer Vision and Pattern Recognition, Cham (2015)

12. Stauffer, M., Tschachtli, T., Fischer, A., Riesen, K.: A Survey on Applications
of Bipartite Graph Edit Distance. In: Graph-Based Representations in Pattern
Recognition. (2017)

13. Wang, P., Eglin, V., Garcia, C., Largeron, C., Llados, J., Fornes, A.: A Novel
Learning-Free Word Spotting Approach Based on Graph Representation. In:
International Workshop on Document Analysis Systems. (2014) 207–211

14. Bui, Q.A., Visani, M., Mullot, R.: Unsupervised word spotting using a graph
representation based on invariants. In: International Conference on Document
Analysis and Recognition. (2015) 616–620

15. Riba, P., Llados, J., Fornes, A.: Handwritten word spotting by inexact matching
of grapheme graphs. In: International Conference on Document Analysis and
Recognition. (2015) 781–785

16. Stauffer, M., Fischer, A., Riesen, K.: Graph-based Keyword Spotting in Historical
Handwritten Documents. In: International Workshop on Structural, Syntactic, and
Statistical Pattern Recognition. (2016)

17. Stauffer, M., Fischer, A., Riesen, K.: A Novel Graph Database for Handwritten
Word Images. In: International Workshop on Structural, Syntactic, and Statistical
Pattern Recognition. (2016)

18. Stauffer, M., Fischer, A., Riesen, K.: Speeding-Up Graph-based Keyword Spotting
in Historical Handwritten Documents. In: Graph-Based Representations in Pattern
Recognition. (2017)

19. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition.
Pattern Recognition Letters 1(4) (1983) 245–253

20. Berretti, S., Del Bimbo, A., Vicario, E.: Efficient matching and indexing of graph
models in content-based retrieval. IEEE Transactions on Pattern Analysis and
Machine Intelligence 23(10) (2001) 1089–1105

21. Fankhauser, S., Riesen, K., Bunke, H.: Speeding Up Graph Edit Distance Com-
putation through Fast Bipartite Matching. In: Graph-Based Representations in
Pattern Recognition. (2011) 102–111

22. Koopmans, T.C., Beckmann, M.: Assignment Problems and the Location of
Economic Activities. Econometrica 25(1) (1957) 53

23. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image and Vision Computing 27(7) (2009) 950–959

24. Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. (2009)

