
1

Pattern Recognition Letters
journal homepage: www.elsevier.com

Filters for Graph-Based Keyword Spotting in Historical Handwritten Documents

Michael Stauffera,d,∗∗, Andreas Fischerb,c, Kaspar Riesena

aUniversity of Applied Sciences and Arts Northwestern Switzerland, Institute for Information Systems, 4600 Olten, Switzerland
bUniversity of Fribourg, Department of Informatics, 1700 Fribourg, Switzerland
cUniversity of Applied Sciences and Arts Western Switzerland, Institute for Complex Systems, 1705 Fribourg, Switzerland
dUniversity of Pretoria, Department of Informatics, Pretoria, South Africa

ABSTRACT

The accessibility to handwritten historical documents is often constrained by the limited feasibility of
automatic full transcriptions. Keyword Spotting (KWS), that allows to retrieve arbitrary query words
from documents, has been proposed as alternative. In the present paper, we make use of graphs for
representing word images. The actual keyword spotting is thus based on matching a query graph with
all documents graphs. However, even with relative fast approximation algorithms the shear amount of
matchings might limit the practical application of this approach. For this reason we present two novel
filters with linear time complexity that allow to substantially reduce the number of graph matchings
actually required. In particular, these filters estimate a graph dissimilarity between a query graph and
all document graphs based on their node and edge distribution in a polar coordinate system. Eventually,
all graphs from the document with distributions that differ to heavily from the query’s node/edge
distribution are eliminated. In an experimental evaluation on four different historical documents, we
show that about 90% of the matchings can be omitted, while the KWS accuracy is not negatively
affected.

c© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In the last decade a vital amount of historical handwritten
documents have been made publicly available due to digitisa-
tion efforts in private and public institutes. However, the auto-
matic recognition of historical handwriting is often negatively
affected by both the degenerative conservation state of scanned
manuscripts and variations in the handwriting. Hence, an au-
tomatic and full transcription is often not feasible and thus the
accessibility — in contrast to the availability — is still a widely
unsolved issue.

To bridge this gap between availability and accessibility, Key-
word Spotting (KWS) as a flexible and more error-tolerant al-
ternative has been proposed (Manmatha et al., 1996; Rath and
Manmatha, 2003; Rodrı́guez-Serrano and Perronnin, 2009; Fis-
cher et al., 2012). KWS allows to retrieve an arbitrary query
word in a certain document without the need of a full tran-
scription. Originally, the concept of KWS has been introduced

∗∗Corresponding author: Tel.: +41 79 543 88 99
e-mail: michael.stauffer@fhnw.ch (Michael Stauffer)

for speech recordings (Rose and Paul, 1990), and was later
adapted for printed (Kuo and Agazzi, 1994) and handwritten
documents (Manmatha et al., 1996). In case of historical hand-
written documents the KWS process is inherently offline and
limited to spatial information only. Generally, offline KWS is
regarded as more difficult task when compared to online KWS
which considers temporal information about the writing process
as well. The focus of this paper is on historical documents, and
thus, offline KWS can be applied only (referred to as KWS from
now on).

KWS approaches are either based on template-based or
learning-based algorithms. In case of template-based KWS,
a single instance of a query word image is directly matched
against a set of document word images. In the latter case, a
trained statistical model is used to detect single characters or
words of a given visual or textual query. Roughly speaking,
template-based methods result in lower recognition rates when
compared to learning-based approaches. Yet, this advantage of
learning-based approaches is accompanied by a loss of flexibil-
ity and generalisability, which is due to the need of an a priori
learning of the statistical model. Moreover, the accuracy of

2

learning-based algorithms is crucially depending on the size of
the labelled training set. However, the acquisition of labelled
training data for historical documents is based on human experts
and turns out to be a labour and time-consuming task. Besides,
many historical documents consist of few pages only, and thus,
the size of labelled training data is often inherently limited. This
makes template-based KWS a more feasible approach for his-
torical documents. In particular, as the matching algorithms are
independent from both the actual representation formalism and
the language of the underlying document.

The first template-based KWS approaches are based on pixel-
wise matchings of word images (Manmatha et al., 1996). Like-
wise, global features (Gradient, Structural and Concavity fea-
tures) as well as Zones Of Interest, rather than single pixels, are
matched in (Zhang et al., 2003) and (Leydier et al., 2007), re-
spectively. However, these features tend to be negatively affected
by noisy word images. Thus, more elaborated and error-tolerant
methods for template-based KWS are based on matching se-
quences of feature vectors rather than single vectors. In many
cases these features are used to describe certain characteristics
of word images like, for example, projection profiles (Rath and
Manmatha, 2003; Zhang et al., 2003), gradients (Zhang et al.,
2003), or geometrical characteristics (Marti and Bunke, 2001),
to mention just a few. Yet, also more generic image feature
descriptors have become popular in recent years like for exam-
ple Histograms of Oriented Gradients (Rodrı́guez-Serrano and
Perronnin, 2008; Terasawa and Tanaka, 2009), Scale-Invariant
Feature Transform (Konidaris et al., 2015), or Deep Learning
features (Wicht et al., 2016). Regardless the features actually
used, Dynamic Time Warping (DTW) is employed as the quasi
standard for matching the resulting sequences of feature vectors.

In learning-based KWS similar features as described above
are used to train a statistical model. Early and widely used
approaches are based on Hidden Markov Models (HMM) (Ed-
wards et al., 2004; Lavrenko et al., 2004; Rodrı́guez-Serrano
and Perronnin, 2009; Fischer et al., 2012; Rothacker et al., 2013;
Thomas et al., 2014). In (Edwards et al., 2004), for instance, gen-
eralised Hidden Markov Models are trained on character images.
More recent HMM approaches are based on feature vectors of
word images rather than character-based segmentations which
are often error-prone and labour intensive (Lavrenko et al., 2004;
Rodrı́guez-Serrano and Perronnin, 2009; Fischer et al., 2012).
However, also other statistical models have been applied like for
example Support Vector Machine (SVM) (Almazán et al., 2014),
or Recurrent Neural Networks (Frinken et al., 2012, 2014) to
name just two examples. With the rise of Convolutional Neu-
ral Networks (CNN), we recently observe a shift in KWS and
related fields from HMMs towards CNNs (Sudholt and Fink,
2016; Toledo et al., 2016; Wilkinson and Brun, 2016; Lluis et al.,
2017; Rothacker et al., 2017).

1.1. Related Work

The KWS approach proposed in this paper is template-based
and makes use of graphs — rather than feature vectors — for the
representation of handwriting. In recent years, graphs gained no-
ticeable interest in many pattern recognition applications (Foggia
et al., 2014; Riesen, 2015; Stauffer et al., 2017d). The increased

interest might be due to the introduction of fast approximation
algorithms that allow to efficiently measure the dissimilarity of
larger and more complex graphs (e.g. (Riesen and Bunke, 2009;
Fischer et al., 2015)). Moreover, graphs, in contrast with feature
vectors, offer a natural way to represent the inherent topological
characteristics of a pattern. Additionally, graphs are capable to
adapt both their size and complexity to the underlying pattern.
However, only limited attempts can be observed for the represen-
tation of handwriting by means of graphs (Wang et al., 2014b;
Bui et al., 2015; Riba et al., 2015; Stauffer et al., 2016b). This
is rather surprising, as graphs — in contrast to feature vectors
— are well suited to adapt to the high structural variabilities of
handwriting. These representational advantages of graphs in
conjunction with fast approximation algorithms motivate the
method of the present paper.

A first graph-based KWS approach has been proposed
in (Wang et al., 2014b), where certain characteristic points (so
called keypoints) in a word image are represented by nodes,
while edges are used to represent strokes between these key-
points. The matching of word graphs is then based on a two step
procedure. First, graph dissimilarities are measured between
pairs of connected components. Second, an optimal alignment
between pairs of connected components is found by means of
DTW. The same procedure has been extended by a so-called
coarse-to-fine approach in (Wang et al., 2014a). Two similar
approaches have been proposed by (Bui et al., 2015) and (Riba
et al., 2015), where nodes represent prototype strokes (termed
invariants and graphemes, respectively), while edges are used
to connect nodes that stem from the same connected component.
In all of these approaches graph dissimilarity is measured by
means of the Bipartite graph matching algorithm (Riesen and
Bunke, 2009).

When compared to these existing approaches, the present
graph-based KWS framework distinguishes in many facets. First,
word images are represented by single graphs, and thus, no ad-
ditional alignment between subgraphs of different connected
components is necessary. Moreover, the applied graph repre-
sentations aim to capture the inherent characteristics of word
images without the need of a prototype library (as used in Bui
et al. (2015); Riba et al. (2015)). Thus, the risk of losing certain
characteristics of the handwriting is minimised. Finally, the
present paper introduces novel filters for graphs to substantially
speed up the KWS procedure (similar in spirit in Wang et al.
(2014a)).

1.2. Contribution

In case of a document (represented by a set of graphs G =

{g1, . . . , gN}) and a number of queries Q = {q1, . . . , qn}, we
need to compute N × n graph matchings. Even with a fast
approximation algorithm for computing graph dissimilarities,
this particular setting might limit the general applicability of our
method. Thus, we aim to reduce the actual number of graph
matchings required by efficiently filtering large parts from G
with a low similarity to the current query graph q ∈ Q. This
approach is known as fast rejection (Rodrı́guez-Serrano and
Perronnin, 2008, 2009) and the focus of the present paper. That
is, we introduce novel graph filters (with linear time complexity)

3

that substantially reduce the number of graph matchings without
negatively affecting the KWS accuracy.

The present paper differs and extends our previous approaches
to graph-based KWS in various ways (Stauffer et al., 2016b,
2017a,b,c; Ameri et al., 2017). In (Stauffer et al., 2016b), we
presented our first graph-based KWS approach, while differ-
ent combinatorial strategies (so called ensemble methods) are
introduced in (Stauffer et al., 2017a). In three independent pub-
lications we introduced then three strategies to speed up the
KWS procedure (Stauffer et al., 2017b,c; Ameri et al., 2017).
The present article follows this line of research and substantially
extends the method for fast rejection presented in (Stauffer et al.,
2017c). In particular, we present a novel graph dissimilarity
measure with linear time complexity that makes use of edges
and nodes, rather than nodes only as proposed in Stauffer et al.
(2017c). This fast graph dissimilarity measure allows very high
filter rates (i.e. a clear speed up when compared to the base-
line system can be expected). Moreover, also the empirical
evaluation is substantially extended when compared with our
preliminary paper. That is, we use two additional datasets of a
recent KWS benchmark (Pratikakis et al., 2016) and thoroughly
present and discuss the evaluation of all parameters.

The remainder of this paper is organised as follows. In Sec-
tion 2, the basic graph-based KWS framework is introduced.
The proposed filters to speed up the KWS process are introduced
in Section 3, while the actual graph matching is described in
Section 4. An experimental evaluation and comparison with
several reference systems is given in Section 5. Finally, Sec-
tion 6 concludes the paper and outlines possible future research
activities.

2. Graph-based Keyword Spotting

The proposed graph-based KWS system includes four basics
steps as illustrated in Fig. 1.

First, document word images are preprocessed in order to
minimise the influence of noisy and skewed scanning (detailed
in Sect. 2.1). Based on binarised and preprocessed document
images, word images are automatically segmented and manu-
ally corrected if necessary. Next, single word images are rep-
resented with graphs by means of different graph extraction
algorithms (see Sect. 2.2). Rather than matching every query
graph q ∈ Q with all graphs from the set of document graphs G,
we apply a specific filtering on G with respect to q based on the
spatial distribution of nodes and edges, respectively (see Sect. 3).
On the remaining graphs from G we apply the Bipartite graph
matching algorithm (Riesen and Bunke, 2009) in order to com-
pare the dissimilarity from q to the unfiltered graphs. Finally,
the resulting graph dissimilarities are used to form a retrieval
index (see Sect. 4).

The two first steps are described in greater detail in the fol-
lowing subsections, while step 3 and 4 are separately described
in Sect. 3 and 4, respectively.

2.1. Image Preprocessing
Image preprocessing basically aims at reducing undesirable

variations which are due to different writers or the digitised doc-
ument itself (e.g. pixel noise, skewed scanning, or degradation

of the document). In our particular case, image preprocessing
is focused on document/scanning issues, while variations in the
writing style are minimised by graph normalisation (see Eq. 1 in
Sect. 2.2).

The first image preprocessing step addresses the issue of noisy
background by means of Difference of Gaussians filtering (Fis-
cher et al., 2010). Subsequently, document images are binarised
by a global threshold approach. The present framework focuses
on KWS that operates on graphs of perfectly segmented word
images. For this reason, document images are first automatically
segmented into single word images by means of their projection
profiles. Next, the resulting word images are manually inspected
and, if necessary, corrected. The present KWS approach ne-
glects any segmentation errors and can therefore be seen as an
upper-bound solution. To handle skew, i.e. the inclination of the
document, the gradient of the lower baseline of a line of text is
estimated and used to deskew single word images (Marti and
Bunke, 2001). In an optional step, preprocessed word images
are skeletonised by means of 3 × 3 thinning operator (Guo and
Hall, 1989). The filtered and binarised word images are denoted
by B, while skeletonised word images are denoted by S from
now on1. In Fig. 4 the influence of the image preprocessing is
shown on four exemplary word images stemming from different
historical manuscripts.

2.2. Graph Representation

Based on binarised and/or skeletonised word images, four dif-
ferent representations are derived (Stauffer et al., 2016a). These
formalisms aim at extracting the inherent topological character-
istics of word images by means of graphs.

In general, a graph g is defined as a four-tuple g = (V, E, µ, ν)
where V and E are finite sets of nodes and edges, and µ : V →
LV as well as ν : E → LE are labelling functions for nodes and
edges, respectively. Graphs can be divided into undirected and
directed graphs, where pairs of nodes are either connected by
undirected or directed edges, respectively. Additionally, graphs
are often distinguished into unlabelled and labelled graphs. In
the latter case, both nodes and edges can be labelled with an
arbitrary numerical, vectorial, or symbolic label from LV or
LE , respectively. In the former case we assume empty label
alphabets, i.e. LV = LE = {}. For all of our graph representations
described below, nodes are labelled with two-dimensional nu-
merical labels, while edges remain unlabelled, i.e. LV = R2 and
LE = {}.

• Keypoint: The first graph extraction algorithm makes
use of characteristics points (so called keypoints) in skele-
tonised word images S . These keypoints are represented
as nodes that are labelled with the corresponding (x, y)-
coordinates. Between pairs of keypoints (which are con-
nected on the skeleton) further intermediate points are con-

1In case of two datasets, viz. AK and BOT (see Section 5.1 for details),
segmented word images are directly taken from the ICFHR2016 benchmark
database (Pratikakis et al., 2016), and thus, only binarisation has been employed.
To handle small segmentation errors, we employ an additional image preprocess-
ing step that removes small connected components on these two manuscripts.

4

Document

2.1) Image
Preprocessing

2.2) Graph
Representation

3) Filtering

Words Doc. Graphs |G| Query Graph q 2 Q Retrieval Index

4) Graph Matching

Below Threshold?

Yes

No

1
… …

1

2

3

… n

Fig. 1: Process of graph-based keyword spotting of the word “October”.

verted to nodes and added to the graph at equidistant inter-
vals. Finally, undirected edges are inserted into the graph
for each pair of nodes that is directly connected by a stroke.

• Grid: The second graph extraction algorithm is based on
a grid-wise segmentation of binarised word images B into
equally sized segments. For each segment, a node is in-
serted into the graph and labelled by the (x, y)-coordinates
of its respective centre of mass. Undirected edges are in-
serted between two neighbouring segments that are actually
represented by a node. Finally, the inserted edges are re-
duced by means of a Minimal Spanning Tree algorithm.

• Projection: The next graph extraction algorithm works
on an adaptive and threshold-based segmentation of bi-
narised word images B. Basically, this segmentation is
computed on the horizontal and vertical projection profiles
of B. The resulting segmentation is further refined in the
horizontal and vertical direction by means of two distance-
based thresholds. A node is inserted into the graph for each
segment and labelled by the (x, y)-coordinates of the corre-
sponding centre of mass. Undirected edges are inserted into
the graph for each pair of nodes that is directly connected
by a stroke in the original word image.

• Split: The fourth graph extraction algorithm is based on
an iterative segmentation of binarised word images B. That
is, segments are iteratively split into smaller subsegments
until the width and height of all segments are below certain
thresholds. A node is inserted into the graph and labelled
by the (x, y)-coordinates of the point on the stroke closest to
the centre of mass of each segment. For the insertion of the
edges, a similar procedure as for Projection is applied.

Finally, the resulting graphs or more precisely the (x, y)-
coordinates of the node labels µ(v) are normalised by a z-score.
Formally, we use normalised coordinates (x̂, ŷ) derived by

x̂ =
x − µx

σx
and ŷ =

y − µy

σy
, (1)

where (µx, µy) and (σx, σy) represent the mean and standard de-
viation of all (x, y)-coordinates in the graph under consideration.

3. Filtering

Representing word images with graphs makes a certain graph
matching necessary. Generally, graphs can be matched by means

of exact or inexact dissimilarity measures. Inexact graph match-
ing in contrast with exact graph matching is able to deal with
small deviations in both structure and labelling of the graphs
under consideration. The problem in either case is the high
computational complexity. In KWS, where huge amounts of
matchings have to be conducted, this might become a problem.

To reduce the number of graph matchings, we need an efficient
and effective measure to estimate whether or not a questioned
document graph g ∈ G might be an instance of a given query
graph q. If, and only if, this measure is below a certain thresh-
old we apply the computational demanding graph matching be-
tween q and g (otherwise we filter g). Such a filter method needs
to fulfil two requirements. First, the estimated graph dissimilar-
ity needs to be coherent with the actual graph dissimilarity in
order to filter graphs from G with high precision. Second, the
computational complexity of the additional measure needs to be
low such that the computational overhead can be compensated.

In order to meet these requirements, we introduce a novel
graph dissimilarity measure with linear time complexity. This
dissimilarity method measures the distance between histograms
of spatial graph segments in a polar coordinate system. We
denote this novel graph dissimilarity by Polar Graph Dissim-
ilarity (PGD) and the corresponding distance dPGD from now
on.

PGD has been inspired by the scale-invariant shape descriptor
Contour Points Distribution Histogram (CPDH) for matching
2D-shape images (Shu and Wu, 2011). Basically this shape
descriptor segments equidistant contour points by means of the
polar coordinate system. Thus, a contour image can be formally
described by a histogram CPDH = {h1, . . . , hi, . . . , hn} where
hi consists of the number of contour points in the correspond-
ing segment. Finally, two shape images can be compared with
each other by computing the Earth Mover Distance (or simi-
lar metrics) between shifted and mirrored histograms (Rubner,
2000).

In the following paragraphs we explain how this concept is
adapted to graphs g = (V, E, µ, ν) with LV = R2 and LE = {}.
First, graphs are segmented in a polar coordinate system. Second,
histograms are extracted for each segment that represent the node
and edge distributions. Finally, two graphs are compared on the
basis of the resulting histograms.

Segmentation. We transform a given graph g into a polar coor-
dinate system based on its centre of mass (xm, ym) as illustrated

5

Fig. 2a2. Formally, the (x, y)-coordinates of each node label
µ(v) = (x, y) ∈ R2 are transformed to

ρ =

√
(x − xm)2 + (y − ym)2 and θi = atan2((y− ym)/(x− xm)) ,

where ρ denotes the radius from the centre of g to the node
position and −π ≤ θi < π refers to the angle from the x-axis to
the node position (computed via arctangent function with two
arguments in order to return the correct quadrant).

Second, a bounding circle C with the maximum radius ρmax
that surrounds all nodes of graph g is defined. Based on this
bounding circle C, the graph is segmented into Pr × Pφ bins
where Pr and Pφ define the number of different radii and angles,
respectively. An example is given in Fig. 2b, where a graph
is segmented into 24 bins (with Pr = 3 and Pφ = 8). Note
that every bin bi is defined by two radii ρimin and ρimax , and two
angles θimin and θimax . Hence, every node v ∈ V with polar coor-
dinates (ρ, θ) and ρimin ≤ ρ < ρimax and θimin ≤ θ < θimax can be
assigned to the corresponding bin bi.

Node-based Histograms. The first histogram is created by count-
ing the number of nodes per bin. That is, the histogram
Hi = {h1, . . . , hn} represents the node frequency per bin bi (see
Fig. 2b and 2c). Finally, the resulting histograms are normalised
by the l1-norm.

Edge-based Histograms. The second histogram reflects the dis-
tribution of both nodes and edges. To this end, we adapt the con-
cept of Histogram of Oriented Gradients to (undirected) graphs
to form a histogram with radial directions of the corresponding
edges (the same adaptation can be applied to directed graphs
as well). In particular, we first define the maximal number of
subbins P that defines the radial range of every subbin bni . For
every edge in a segment, we measure the Euclidean distance d
between the two adjacent nodes as well as the angle θ of the edge
to the x-axis. Next, d is assigned to the two enclosing subbins
bni and bn j with respect to their radial difference to θ. Formally,

bni += 1 −
θ − θi

v
d and bn j +=

θ − θi

v
d .

Note that every edge is taken into account in both directions
as we make use of undirected edges. Finally, the resulting
histogram {bn1 , . . . , bnP } (i.e. one histogram per segment with P
bins) is first concatenated to form one global histogram H =

{h1 = {b11 , . . . , b1P }, . . . , hn = {bn1 , . . . , bnP }} as illustrated in
Fig. Fig. 2b and 2d and then normalised by the l1-norm. In our
evaluation we set P = 10 for all subbins.

Polar Graph Dissimilarity. To measure the dissimilarity be-
tween two histograms H1 and H2 that represent the node and/or
edge distribution of two graphs g1 and g2, respectively, we make
use of the χ2 distance. However, rather than comparing two his-
tograms directly, we make use of a quadtree segmentation. That
is, we segment the graph into smaller subgraphs and measure

2Node coordinates are a priori denormalised by the standard deviation of all
node coordinates, for further details we refer to (Stauffer et al., 2016b).

the dissimilarity between smaller subgraphs as formalised in
Algorithm 1. First, the procedure is initialised by an external
call with l = 1 (i.e. PGD(1, g1, g2)). On the basis of two graphs
g1 and g2 the histograms H1 and H2 are created with respect to
Pr and Pφ (see line 2 of Algorithm 1)3. Next, the χ2-distance
between the two histograms is measured (see line 3). If the
current recursion level l is equal to the maximal recursion depth
r, the distance is returned (see lines 4 and 5). Otherwise, both
graphs g1 and g2 are segmented into four independent subgraphs.
Each of these subgraphs represent the nodes and edges in one of
the four quadrants in circle C (see line 6). Eventually, for each
subgraph pair, the PGD is measured by means of a recursive
function call (see line 7). This procedure is repeated until the
current recursion level l is equal to the user-defined maximum
depth r.

Algorithm 1 Polar Graph Dissimilarity (PGD)
Input: Graphs g1 and g2, number of radii and segments Pr and Pφ, recursion depth r
Output: Polar graph dissimilarity between graph g1 and g2
1: function PGD(l, g1, g2)
2: Create H1 based on g1, Pr , Pφ, and H2 based on g2, Pr , Pφ
3: Calculate χ2-distance d(H1,H2)
4: if l equal r then
5: return d
6: Segment g1 and g2 based on quadtree to g11 , g12 , g13 , g14 and g21 , g22 , g23 , g24

7: return d(H1,H2) + (
4∑

i=1
PGD(l + 1, g1i , g2i))

If the resulting distance dPGD(q, gi) between a query graph q
and document graph gi is below a certain threshold D, we addi-
tionally carry out the computationally more expensive Bipartite
Graph Edit Distance (BP) (denoted by dBP and thoroughly de-
scribed in the next section) (Riesen and Bunke, 2009), otherwise
we reject graph gi and assign the graph dissimilarity to be ∞.
Formally,

d(q, gi)

dBP(q, gi), if dPGD(q, gi) < D
∞, otherwise

.

Clearly, if the threshold D is increased the number of filtered
document graphs is reduced. Likewise, the number of filtered
graphs is increased when threshold D is decreased. Overall we
aim at finding a good tradeoff between high filter rates and low
error rates.

We denote the graph matching procedure with this fast rejec-
tion procedure by BP-FRN in case of node-based histograms
and BP-FRE in case of edge-based histograms.

4. Graph Matching

We apply Graph Edit Distance (GED), a powerful and flexible
graph matching paradigm (Bunke and Allermann, 1983). The
basic idea of GED is to transform graph g1 into graph g2 using
a sequence of edit operations like insertions, deletions, and
substitutions of both nodes and edges. A set {e1, . . . , ek} of k edit
operations ei that transform g1 completely into g2 is called an
edit path λ(g1, g2) between g1 and g2.

3Note that Pr and Pφ can be defined for every recursion level separately.

6

(xm, ym)

⇢max

(a) Bounding circle C with centre
of mass (xm, ym) and radius ρmax

b1

b2b3

b4

b5
b6 b7

b8

b9

b10b11

b12

b13

b14 b15

b16

b17

b18b19

b20

b21

b22 b23

b24

(b) Segmentation of C into bins

2

24

5

2

1 2

2

9

32

7

5

2 3

4

5

00

0

7

0 0

0

(c) Node-based histogram

b16

0� 360�. . .

(d) Edge-based histogram

Fig. 2: Construction of the polar graph dissimilarity.

To find the most suitable edit path, one commonly introduces
a cost c(e) for every edit operation e, measuring the strength
of the corresponding operation. The idea of such a cost is to
define whether or not an edit operation e represents a strong
modification of the graph. Given an adequate cost model, the
graph edit distance dGED(g1, g2), or dGED for short, between g1
and g2 is defined by

dGED(g1, g2) = min
λ∈Υ(g1,g2)

∑
ei∈λ

c(ei) ,

where Υ(g1, g2) is the set of all edit paths between g1 and g2.
For the exact computation of dGED, A*-based search tech-

niques using some heuristics are usually employed (Gregory and
Kittler, 2002; Berretti et al., 2001). However, the search space of
possible edit paths is exponential with respect to the number of
nodes of the involved graphs. Formally, GED is an instance of a
Quadratic Assignment Problems (QAPs) (Koopmans and Beck-
mann, 1957), which in turn belongs to the class ofNP-complete
problems4.

To tackle the high computational complexity of GED, several
fast but suboptimal algorithms have been proposed in the last
years (see (Foggia et al., 2014)). These concepts make GED
also applicable to larger graphs. A cubic time approximation
for GED has been proposed in (Riesen and Bunke, 2009), for
instance. This algorithm reduces the QAP of GED to a Linear
Sum Assignment Problem (LSAP) that can be optimally solved
in cubic time (see (Burkard et al., 2009) for an exhaustive survey
on LSAP solving algorithms). The optimal LSAP solution is
eventually used to derive a suboptimal GED.

The employed cost model in our case is based on constant
cost for both node and edge deletions/insertions, i.e. τv ∈ R+ and
τe ∈ R+, respectively. The cost for node substitutions reflects
the dissimilarity of the associated label attributes, i.e. (x, y)-
coordinates. Formally, the cost for substituting node ni with
µ(ni) = (xi, yi) and node n j with µ(n j) = (x j, y j) is given by a
weighted Euclidean distance√

ασx(xi − x j)2 + (1 − α)σy(yi − y j)2 ,

4That is, an exact and efficient algorithm for the graph edit distance problem
can not be developed unless P = NP.

where α ∈ [0, 1] denotes a parameter to weight the importance
of the x- and y-coordinate of a node, while σx and σy denote
the standard deviation of all node coordinates in the current
query graph. We additionally use a weighting factor β ∈ [0, 1]
to weight the relative importance of node and edge edit costs.

Retrieval Index. For spotting keywords, we build two retrieval
indices that are separately optimised for a local and global thresh-
old scenario. Local thresholds are used in case of a vocabulary
of common keywords, while a global threshold is used for arbi-
trary out-of-vocabulary keywords. In case of local thresholds,
the accuracy is independently measured for every query word,
while in case of global thresholds, the accuracy is measured for
every query word with the same single threshold5. Global thresh-
old are thus regarded as more realistic yet also more difficult
scenario.

For building the retrieval indices we first normalise the graph
edit distances dBP between query graph q and all document
graphs G = {g1, . . . , gN} by the sum of the maximum cost edit
path between q and gi, i.e. the sum of the edit path that results
from deleting all nodes and edges of q and inserting all nodes
and edges in gi. Formally,

d̂BP(q, gi) =
dBP(q, gi)

(|Vq| + |Vgi |) τv + (|Eq| + |Egi |) τe
.

In case a query consists of a set of graphs {q1, . . . , qt} that
represent the same keyword, the normalised graph edit distance
d̂BP is given by the minimal distance achieved on all t query
graphs, i.e. min

q j∈{q1,...,qt}
d̂BP(q j, gi).

Based on normalised distances, the retrieval index for local
thresholds is derived by

r1(q, g) = −d̂BP(q, g) ,

while the retrieval index for global thresholds is derived by

r2(q, g) = −
d̂BP(q, g)

ω
,

5In both cases, the threshold defines whether a document word is regarded
relevant for a given query word not.

7

where ω is a linear scaling factor based on the mean distance
of q to its ten nearest neighbours (denoted by d̄BP from now on)
and the minimum mean distance of all available query graphs
(denoted by d̄BPmin). Formally, ω is given by

ω = 1 + m(d̄BP − d̄BPmin) ,

where m is a user defined scaling slope. The basic idea of this
procedure is to gradually scale d̂BP(q, g) depending on the mean
distance of q to its ten next neighbours. This is expected to
reduce the intraclass variance between different queries and
improve the accuracy for global thresholds.

5. Experimental Evaluation

5.1. Datasets

The evaluation is based on two well known manuscripts,
viz. George Washington (GW)6 and Parzival (PAR)7, as well
as two recent KWS benchmark datasets8, viz. Alvermann Konzil-
sprotokolle (AK) and Botany (BOT). GW is written in English
and based on twenty pages with minor variations in writing
and degradation. PAR is written in Middle High German and
based on 45 pages with low writing variations but markable
signs of degradation. AK is written in German and based on
18,000 pages with minor variations and signs of degradation.
Finally, BOT is written in English and based on ten pages with
high writing variation and markable signs of degradation. On
all four documents we extract graphs from segmented word im-
ages by means of the graph extraction algorithms introduced
in Subsection 2.2. For AK and BOT, we only consider the two
most promising graph extraction algorithms, i.e. Keypoint and
Projection. Small excerpts of all four manuscripts and the
corresponding graph representations are shown in Fig. 3 and 4.

On the resulting sets of word graphs, ten different key-
words (with different word lengths) are manually selected on all
four datasets. Moreover, we define an independent validation set
for parameter optimisation that consists of 10 random instances
per keyword instance and 900 additional random words (in total
1,000 words). The optimised systems are eventually evaluated
on the same training and test sets as used in (Fischer et al., 2012)
for GW and PAR and (Pratikakis et al., 2016) for AK and BOT.
All templates of a keyword present in the training set are used
for KWS. In Table 1 a summary of the datasets is given.
5.2. Optimisation of the Parameters

The proposed KWS framework is separately optimised for
local and global thresholds. In the global threshold scenario,
the Average Precision (AP) is measured, which is the area un-
der the Recall-Precision curve for all keywords given a single

6George Washington Papers at the Library of Congress, 1741-1799: Series
2, Letterbook 1, pp. 270-279 & 300-309, http://memory.loc.gov/ammem/
gwhtml/gwseries2.html

7Parzival at IAM historical document database, http://www.fki.

inf.unibe.ch/databases/iam-historical-document-database/

parzival-database
8Alvermann Konzilsprotokolle and Botany at ICFHR2016 benchmark

database, http://www.prhlt.upv.es/contests/icfhr2016-kws/data.
html

(a) George Washington

(b) Parzival

(c) Botany

(d) Alvermann Konzilsprotokolle

Fig. 3: Exemplary excerpts of the four historical manuscripts.

Table 1: The number of keywords as well as the size of the training and test sets
for all four documents.

Dataset Keywords Train Test

GW 105 2,447 1,224
PAR 1,217 11,468 6,869
BOT 150 1,684 3,380
AK 200 1,849 3,734

threshold. In the local threshold scenario, the Mean Average
Precision (MAP) is computed, that is the mean over the AP of
each individual keyword query. To measure the effects of the
proposed rejection methods, we compute the relative amount of
pairwise matchings that is filtered (termed Filter Rate (FR)) and
the Speed-up Factor (SF) when compared to the matching time
of BP.

The optimisation of the parameters is conducted in three steps
on the validation set. First, we optimise the cost functions for the
edit distance computation. Second, the parameters for the PGD
filters are optimised. Third, threshold D is used to optimally
adjust the filter rate. These three steps are described in detail in
the next three paragraphs.

Optimisation of BP. The parameters for graph edit distance
are individually optimised for both MAP and AP. That is,
we evaluate 25 pairs of constants for node and edge dele-
tion/insertion costs (τv = τe = {1, 4, 8, 16, 32}) in combination
with the weighting parameters α = {0.1, 0.3, 0.5, 0.7, 0.9} and
β = {0.1, 0.3, 0.5, 0.7, 0.9}. Hence, we evaluate a total of 625
parametrisations per graph extraction method and dataset. Using

8

Original

GW

PAR

BOT

AK

Preprocessed Keypoint Grid Projection Split

Fig. 4: Exemplary graph representations of the George Washington (GW), Parzival (PAR), Botany (BOT), and Alvermann Konzilsprotokolle (AK) database.

optimised cost functions, we optimised our framework for a
global threshold scenario using retrieval index r2. That is, we
optimised the scaling factor m = {0.05, . . . , 10.0} for all graph
extraction methods and datasets. For local thresholds no ad-
ditional parameter tuning has to be conducted. In Table 2 the
optimal cost function parameters as well as the scaling factor
for global retrieval indices are given for all graph extraction
algorithms and datasets.

Table 2: Optimal cost function parameters and scaling factors for graph edit
distance computation.

Method τv τe α β m

GW Keypoint 4 1 0.1 0.5 4.55
Grid 4 1 0.1 0.7 4.70
Projection 4 1 0.1 0.5 4.90
Split 4 1 0.1 0.5 4.75

PAR Keypoint 4 4 0.3 0.5 2.50
Grid 4 1 0.5 0.7 3.60
Projection 4 1 0.5 0.5 3.90
Split 4 1 0.3 0.3 2.65

BOT Keypoint 32 32 0.1 0.3 3.30
Projection 8 32 0.3 0.9 6.05

AK Keypoint 16 16 0.1 0.5 3.35
Projection 8 32 0.1 0.7 2.35

Optimisation of PGD. The parameters of PGD are optimised
with respect to AP. On the validation set different polar segmen-
tations (defined via Pr and Pφ) are validated for two recursion
levels (i.e. we define the maximal recursion depth to r = 2). For
l = 1, the parameter combinations Pr = {1, 2, 3, 4, 5, 6} × Pφ =

{4, 8, 12, 16, 20, 24, 28, 32, 36, 40} are evaluated, while for l = 2
the parameter combinations Pr = {1, 2, 3, 4}×Pφ = {2, 4, 6, 8, 10}
are evaluated. Hence, in total we evaluate 6× 10× 4× 5 = 1,200
parameter combinations for every graph extraction method. In
Table 3 the best performing parameters are presented for all
graph extraction methods and datasets.

Optimisation of Filtering. Finally, we optimise the threshold D
that controls the amount of filtered graphs. For BP-FRN we
evaluate thresholds D = {0.75, 1.5, . . . , 29.25, 30} and for BP-
FRE we evaluate thresholds D = {2.5, 5, . . . , 147.5, 150}. In
Fig. 5 the AP and FR for BP-FRE are shown for every tested
threshold D on the GW dataset (similar plots can be achieved on

Table 3: Optimal Pr and Pφ for PGD on both recursion levels l in conjunction
with node- and edge-based histograms, respectively.

Node Edge

l = 1 l = 2 l = 1 l = 2

Method Pr Pφ Pr Pφ Pr Pφ Pr Pφ

GW Keypoint 5 8 1 4 4 16 1 4
Grid 4 8 1 2 5 40 1 4
Projection 5 16 1 4 6 4 1 2
Split 6 24 1 2 5 40 1 4

PAR Keypoint 6 36 4 8 3 36 3 4
Grid 1 36 1 8 6 36 4 4
Projection 6 36 4 4 4 36 4 8
Split 2 36 3 8 6 8 3 8

BOT Keypoint 6 40 1 4 1 16 2 4
Projection 4 40 4 4 1 36 2 4

AK Keypoint 4 20 1 2 4 4 1 4
Projection 4 20 1 10 4 20 2 4

all other datasets). By increasing D we observe that the KWS
performance is improved in general. Simultaneously, the number
of filtered graphs is decreasing (making the KWS process slower
in general). Threshold D is determined such that the AP is
maximised (if this threshold is actually too restrictive, we choose
the next higher threshold where the AP is not further decreasing).
In Table 4 the selected threshold D and the corresponding filter
rates FR are given for each graph extraction method and all four
datasets.

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100 125 150

D

[%
]

AP

FR

Keypoint

Grid

Projection

Split

Fig. 5: Average precision (AP) and filter rate (FR) for BP-FRE as function of
threshold D.

9

Table 4: Optimal D and corresponding filter rate (FR).

BP-FRN BP-FRE

Method D FR D FR

GW Keypoint 7.50 88.08 45.0 93.57
Grid 4.50 89.43 55.0 94.17
Projection 8.25 91.55 35.0 92.66
Split 12.75 56.74 62.5 82.75

PAR Keypoint 24.00 82.49 65.0 94.12
Grid 6.75 91.91 77.5 94.48
Projection 17.25 95.51 82.5 91.00
Split 16.50 88.42 65.0 94.66

BOT Keypoint 13.50 95.97 92.5 84.59
Projection 19.50 91.09 105.0 93.78

AK Keypoint 7.50 96.00 60.0 89.18
Projection 12.75 92.36 110.0 90.03

5.3. Reference Systems

In order to evaluate the two proposed fast rejection heuristics
BP-FRN and BP-FRE, we consider three types of reference sys-
tems, viz. (1) a recent graph-based system, (2) template-based
systems using DTW, and (3) learning-based KWS systems.

First, we compare the novel filter methods with the graph-
based KWS framework without fast rejection (denoted by BP)
proposed in (Stauffer et al., 2016b) on all datasets.

Next, we compare the proposed approach with four template-
based KWS systems using DTW on the GW and PAR datasets9.
These systems optimally align sequences of feature vectors
like geometrical features (Marti and Bunke, 2001) (denoted by
DTW’01), Histogram of Oriented Gradient features (Rodrı́guez-
Serrano and Perronnin, 2008; Terasawa and Tanaka, 2009) (de-
noted by DTW’08 and DTW’09, respectively), and Deep Learn-
ing features (Wicht et al., 2016) (denoted by DTW’16).

Finally, we compare our method with three state-of-the-art
learning-based methods, viz. CVCDAG (Almazán et al., 2014),
PRG (Sudholt and Fink, 2016), and QTOB (Wilkinson and Brun,
2016), on the BOT and AK datasets10. CVCDAG is based on
Pyramidal Histogram Of Characters labels (PHOC) features
used in conjunction with a SVM (Almazán et al., 2014). In
PRG, the same features are used to train a CNN, the so called
PHOCNet (Sudholt and Fink, 2016). Another CNN is used in
QTOB by means of a triplet network approach (Wilkinson and
Brun, 2016).

5.4. Results and Discussion

First, we compare the proposed rejection methods BP-FRN
and BP-FRE with the graph-based KWS framework BP without
fast rejection (Stauffer et al., 2016b) on the independent test
sets. In Table 5 the MAP for local thresholds, the AP for global
thresholds, as well as the FR is given for all methods. On the
GW dataset we observe filter rates between 60% and 90% for
BP-FRN, and 85% and 95% for BP-FRE (i.e. only 5% to 40%
of all comparisons have to be carried out by the bipartite graph
matching algorithm). Due to this filtering, we observe speed-up

9Template-based reference results are only available for GW and PAR.
10Learning-based reference results are only available for BOT and AK.

factors of 4 to 21 when compared with the original framework,
as shown in Table 611.

Simultaneously both methods BP-FRN and BP-FRE achieve
better KWS accuracies than the plain method BP. In particular,
the KWS accuracy can be improved by up to 4%. When com-
pared with BP-FRN, BP-FRE generally leads to higher filter
rates as well as higher accuracies in both threshold scenarios. In
particular, BP-FRE in combination with Keypoint graphs lead
to promising results.

Given the high accuracies achieved by our filter methods
BP-FRN and BP-FRE, one might wonder how the graph dissim-
ilarity PGD performs as a single graph dissimilarity measure
for KWS, rather than as filter method. In Table 7, the MAP
for PGD with node-based histograms (termed PGD-Node) and
edge-based histograms (termed PGD-Edge) is compared against
BP using Keypoint graphs (for the other graphs similar results
are obtained). We observe that PGD-Node results in a lower
KWS accuracy when compared to BP, whereas PGD-Edge per-
forms similar or even better than BP. Thus, we conclude that
PGD-Edge can be employed for both filtering and for computing
a basic dissimilarity measure for KWS.

Next, we compare the two novel graph-based methods BP-
FRN and BP-FRE (using the best performing graph extraction
method) with four DTW-based reference system for template-
based KWS on GW and PAR. In Table 8, the MAP for each
dataset as well as their average is given. On GW we observe that
both graph-based methods clearly outperform the DTW-based
reference systems. Especially, BP-FRE leads to substantial
improvements when compared to all DTW systems. On PAR
both DTW’09 and DTW’16 are slightly better than our graph-
based methods. However, these methods are based on highly
sophisticated features. In particular, DTW’16 makes use of an
unsupervised feature learning approach. Overall, we conclude
that both graph-based methods are able to outperform, or at least
keep up with, the DTW-based reference systems.

Finally, in Table 9 we compare our novel methods for graph-
based KWS with three learning-based methods on the two
ICFHR2016 benchmark datasets. We observe that both fast
rejection methods obtain high accuracy rates. Yet, BP-FRE
is slightly better in case of BOT when compared to BP-FRN.
Among the the learning-based methods we observe that both
PHOC-based methods, i.e. CVCDAG and PRG, result in the
overall best performance. Especially, the combination of a CNN
and PHOC features (PRG) results in remarkable high accuracies
on all datasets.

However, the proposed graph-based methods can keep up or
even outperform several learning-based methods, especially on
AK. This is quite interesting as the reference methods are based
on more advanced features than our approach and make use of
sophisticated learning-based algorithms (i.e. SVM and CNN).

Considering that manual labelling of historical handwriting is
a labour- and cost-intensive process, and, the limited availability

11Actually, we carry out our experiment on a high performance computing
cluster with dozens of CPU nodes. Hence, these readings are approximated by
means of the average matching time per keyword measured on the validation set
in a sequential scenario.

10

Table 5: Mean average precision (MAP) using local thresholds, average precision (AP) using a global threshold, and filter rate (FR) for KWS using the original
bipartite graph matching without rejection (BP) and with the proposed fast rejection methods BP-FRN and BP-FRE. With ± we indicate the relative percental gain or
loss in the accuracy of BP-FR when compared with BP.

GW PAR BOT AK

Method MAP ± AP ± FR MAP ± AP ± FR MAP ± AP ± FR MAP ± AP ± FR

B
P

Keypoint 66.08 54.37 0.00 62.04 61.36 0.00 45.06 33.84 0.00 77.24 76.32
Grid 60.02 45.52 0.00 56.50 43.55 0.00 - - - - - - - - - -
Projection 61.43 48.45 0.00 66.23 64.23 0.00 49.57 38.33 0.00 76.02 74.38
Split 60.23 48.41 0.00 59.44 58.29 0.00 - - - - - - - - - -

B
P-

FR
N Keypoint 69.81 +3.73 56.45 +2.08 86.97 67.28 +5.24 67.04 +5.68 73.60 56.10 +11.04 39.85 +6.01 85.64 81.51 +4.27 79.01 +2.69 85.45

Grid 62.85 +2.83 46.39 +0.86 90.92 62.33 +5.83 59.52 +15.97 86.13 - - - - - - - - - -
Projection 65.20 +3.77 51.19 +2.75 93.02 71.09 +4.86 71.77 +7.54 93.85 53.77 +4.20 37.75 −0.58 84.20 79.09 +3.07 77.20 +2.82 91.09
Split 63.15 +2.92 51.27 +2.86 58.17 65.43 +5.99 66.80 +8.51 82.84 - - - - - - - - - -

B
P-

FR
E Keypoint 70.61 +4.52 57.04 +2.67 95.32 68.16 +6.12 67.42 +6.06 92.53 57.14 +12.08 40.48 +6.64 84.75 81.51 +4.27 79.91 +3.59 88.57

Grid 62.86 +2.84 45.20 −0.32 95.78 63.12 +6.62 59.85 +16.30 91.61 - - - - - - - - - -
Projection 65.51 +4.08 50.69 +2.25 94.79 72.03 +5.80 71.48 +7.25 84.20 52.56 +2.99 36.91 −1.42 86.20 81.51 +5.49 79.26 +4.88 92.48
Split 64.01 +3.78 51.78 +3.37 85.38 66.49 +7.05 65.73 +7.44 92.69 - - - - - - - - - -

Table 6: Mean average precision (MAP) for local thresholds and speed-up
factor (SF), for the original bipartite graph matching (BP), and the bipartite
fast rejection with nodes (BP-FRN) and edges (BP-FRE), respectively, on the
Keypoint graphs.

GW SF PAR SF BOT SF AK SF

BP 66.08 62.04 45.06 77.24

BP-FRN 69.81 7.68 67.28 3.79 56.10 6.97 81.51 6.87

BP-FRE 70.61 21.35 68.16 13.38 57.14 6.56 81.51 8.75

Table 7: Mean average precision for local thresholds for the original bipartite
graph matching (BP), and the polar graph dissimilarity with nodes (PGD-Node)
and edges (PGD-Edge), respectively, on the Keypoint graphs.

GW ± PAR ± BOT ± AK ±

BP 66.08 62.04 45.06 77.24

PGD-Node 58.47 −7.62 46.71 −15.33 45.81 +0.75 69.66 −7.58

PGD-Edge 68.78 +2.70 61.47 −0.57 52.11 +7.05 76.17 −1.07

of training data, our graph-based methods become a valuable
and flexible alternative especially as only one single keyword is
required for retrieval without a priori training12.

Table 8: Mean average precision (MAP) using local thresholds for graph-based
KWS systems in comparison with four template-based reference systems on the
George Washington (GW) and Parzival (PAR) dataset. The first, second, and
third best systems are indicated by (1), (2), and (3).

Method GW PAR Average

Reference (Template) DTW’01 45.26 46.78 46.02
DTW’08 63.39 47.52 55.46
DTW’09 64.80 73.49 (1) 69.15
DTW’16 68.64 (3) 72.38 (2) 70.51 (2)

Graph BP-FRN 69.81 (2) 71.09 70.45 (3)
BP-FRE 70.61 (1) 72.03 (3) 71.32 (1)

6. Conclusion and Outlook

In the present paper two novel filter methods for graph-based
KWS are introduced. These filters allow to decide in linear time

12Some of the reference systems need relatively large training sets, i.e. la-
belled training data (e.g. PRG achieves lower rates on penalised/weighted MAP,
see (Pratikakis et al., 2016) for details).

Table 9: Mean average precision (MAP) using local thresholds for graph-based
KWS systems in comparison with three state-of-the-art learning-based reference
systems on the Alvermann Konzilsprotokolle (AK) and Botany (BOT) datasets.
The first, second, and third best systems are indicated by (1), (2), and (3).

Method BOT AK Average

Reference (Learning) CVCDAG 75.77 (2) 77.91 76.84 (2)
PRG 89.69 (1) 96.05 (1) 92.87 (1)
QTOB 54.95 82.15 (2) 68.55

Graph BP-FRN 56.10 81.51 (3) 68.81
BP-FRE 57.14 (3) 81.51 (3) 69.33 (3)

whether or not a graph from a document is similar enough to
a given query graph. In particular, the filter methods compare
histograms of the node and edges distributions in a polar coordi-
nate system. If, and only if, two histograms are similar enough,
the more powerful and accurate graph matching is actually car-
ried out, otherwise the document graph is rejected. Due to this
filtering, more than 90% of all matchings can be omitted. The
proposed rejection criterion is computed in linear time, while the
graph matching has cubic time complexity. Thus, we observe
substantial speed-ups of the complete KWS process. Moreover,
the proposed filters also improve the KWS accuracy in most sce-
narios. Hence, the advantage of our novel framework is twofold:
It makes KWS fast and more accurate.

Finally, we show that the two novel filters for graph-based
KWS can keep up or even outperform several state-of-the-art
template- and learning-based systems. This is quite remarkable
as some of these reference systems are based on advanced fea-
tures and use learning-based matching algorithms (e.g. CNN).
Moreover, it is worth to note that the learning systems are cru-
cially depending on the size of labelled training data. Yet, such
training data is often difficult to acquire in case of handwritten
historical documents. This makes our graph-based methods to
a viable alternative, especially as only one keyword template is
necessary for retrieval.

In future work we aim to optimise and automise the thresh-
olding of the filter methods, such that no additional optimisation
step is required. Moreover, as our novel linear time graph com-
parison achieves quite high accuracies, one might consider to
use the proposed graph filter as an independent dissimilarity
measure in other graph-based pattern recognition applications.

11

Acknowledgments

This work has been supported by the Hasler Foundation
Switzerland.

References

Almazán, J., Gordo, A., Fornés, A., Valveny, E., 2014. Word Spotting and Recog-
nition with Embedded Attributes. IEEE Transactions on Pattern Analysis and
Machine Intelligence 36, 2552–2566.

Ameri, M.R., Stauffer, M., Riesen, K., Bui, T.D., Fischer, A., 2017. Keyword
Spotting in Historical Documents Based on Handwriting Graphs and Haus-
dorff Edit Distance, in: International Graphonomics Society Conference.

Berretti, S., Del Bimbo, A., Vicario, E., 2001. Efficient matching and indexing
of graph models in content-based retrieval. IEEE Transactions on Pattern
Analysis and Machine Intelligence 23, 1089–1105.

Bui, Q.A., Visani, M., Mullot, R., 2015. Unsupervised word spotting using a
graph representation based on invariants, in: International Conference on
Document Analysis and Recognition, pp. 616–620.

Bunke, H., Allermann, G., 1983. Inexact graph matching for structural pattern
recognition. Pattern Recognition Letters 1, 245–253.

Burkard, R., Dell’Amico, M., Martello, S., 2009. Assignment Problems.
Edwards, J., Teh, Y.W., Bock, R., Maire, M., Vesom, G., Forsyth, D.A., 2004.

Making latin manuscripts searchable using gHMM’s, in: International Con-
ference on Neural Information Processing Systems, pp. 385–392.

Fischer, A., Indermühle, E., Bunke, H., Viehhauser, G., Stolz, M., 2010. Ground
truth creation for handwriting recognition in historical documents, in: Inter-
national Workshop on Document Analysis Systems, pp. 3–10.

Fischer, A., Keller, A., Frinken, V., Bunke, H., 2012. Lexicon-free handwritten
word spotting using character HMMs. Pattern Recognition Letters 33, 934–
942.

Fischer, A., Suen, C.Y., Frinken, V., Riesen, K., Bunke, H., 2015. Approximation
of graph edit distance based on Hausdorff matching. Pattern Recognition 48,
331–343.

Foggia, P., Percannella, G., Vento, M., 2014. Graph Matching and Learning
in Pattern Recognition in the last 10 Years. International Journal of Pattern
Recognition and Artificial Intelligence 28, 1450001.

Frinken, V., Fischer, A., Baumgartner, M., Bunke, H., 2014. Keyword spotting
for self-training of BLSTM NN based handwriting recognition systems.
Pattern Recognition 47, 1073–1082.

Frinken, V., Fischer, A., Manmatha, R., Bunke, H., 2012. A novel word spotting
method based on recurrent neural networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence 34, 211–224.

Gregory, L., Kittler, J., 2002. Using Graph Search Techniques for Contextual
Colour Retrieval, in: International Workshop on Structural, Syntactic, and
Statistical Pattern Recognition, pp. 186–194.

Guo, Z., Hall, R.W., 1989. Parallel thinning with two-subiteration algorithms.
Communications of the ACM 32, 359–373.

Konidaris, T., Kesidis, A.L., Gatos, B., 2015. A segmentation-free word spotting
method for historical printed documents. Pattern Analysis and Applications
19, 963–976.

Koopmans, T.C., Beckmann, M., 1957. Assignment Problems and the Location
of Economic Activities. Econometrica 25, 53.

Kuo, S.S., Agazzi, O.E., 1994. Keyword spotting in poorly printed documents
using pseudo 2-D hidden Markov models. IEEE Transactions on Pattern
Analysis and Machine Intelligence 16, 842–848.

Lavrenko, V., Rath, T., Manmatha, R., 2004. Holistic word recognition for
handwritten historical documents, in: International Workshop on Document
Image Analysis for Libraries, pp. 278–287.

Leydier, Y., Lebourgeois, F., Emptoz, H., 2007. Text search for medieval
manuscript images. Pattern Recognition 40, 3552–3567.

Lluis, G., Rusiñol, M., Karatzas, D., 2017. LSDE : Levenshtein Space Deep
Embedding for Query-by-string Word Spotting, in: International Conference
on Document Analysis and Recognition, pp. 499–504.

Manmatha, R., Chengfeng Han, Riseman, E., 1996. Word spotting: a new
approach to indexing handwriting, in: IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pp. 631–637.

Marti, U.V., Bunke, H., 2001. Using a statistical language model to improve
the performance of an HMM-based cursive handwriting recognition systems.
International Journal of Pattern Recognition and Artificial Intelligence 15,
65–90.

Pratikakis, I., Zagoris, K., Gatos, B., Puigcerver, J., Toselli, A.H., Vidal, E.,
2016. ICFHR2016 Handwritten Keyword Spotting Competition (H-KWS
2016), in: International Conference on Frontiers in Handwriting Recognition,
pp. 613–618.

Rath, T.M., Manmatha, R., 2003. Word image matching using dynamic time
warping, in: IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pp. II–521–II–527.

Riba, P., Lladós, J., Fornés, A., 2015. Handwritten word spotting by inexact
matching of grapheme graphs, in: International Conference on Document
Analysis and Recognition, pp. 781–785.

Riesen, K., 2015. Structural Pattern Recognition with Graph Edit Distance.
Advances in Computer Vision and Pattern Recognition.

Riesen, K., Bunke, H., 2009. Approximate graph edit distance computation
by means of bipartite graph matching. Image and Vision Computing 27,
950–959.

Rodrı́guez-Serrano, J.A., Perronnin, F., 2008. Local gradient histogram features
for word spotting in unconstrained handwritten documents, in: International
Conference on Frontiers in Handwriting Recognition, pp. 7–12.

Rodrı́guez-Serrano, J.A., Perronnin, F., 2009. Handwritten word-spotting using
hidden Markov models and universal vocabularies. Pattern Recognition 42,
2106–2116.

Rose, R., Paul, D., 1990. A hidden Markov model based keyword recognition
system, in: IEEE International Conference on Acoustics, Speech, and Signal
Processing, pp. 129–132.

Rothacker, L., Rusiñol, M., Fink, G.a., 2013. Bag-of-features HMMs for
segmentation-free word spotting in handwritten documents, in: International
Conference on Document Analysis and Recognition, pp. 1305–1309.

Rothacker, L., Sudholt, S., Rusakov, E., Kasperidus, M., Fink, G.A., 2017.
Word Hypotheses for Segmentation-free Word Spotting in Historic Document
Images, in: International Conference on Document Analysis and Recognition,
pp. 1174–1179.

Rubner, Y., 2000. The Earth Mover’s Distance as a Metric for Image Retrieval.
International Journal of Computer Vision 40, 99–121.

Shu, X., Wu, X.J., 2011. A novel contour descriptor for 2D shape matching and
its application to image retrieval. Image and Vision Computing 29, 286–294.

Stauffer, M., Fischer, A., Riesen, K., 2016a. A Novel Graph Database for Hand-
written Word Images, in: International Workshop on Structural, Syntactic,
and Statistical Pattern Recognition, pp. 553–563.

Stauffer, M., Fischer, A., Riesen, K., 2016b. Graph-based Keyword Spotting in
Historical Handwritten Documents, in: International Workshop on Structural,
Syntactic, and Statistical Pattern Recognition, pp. 564–573.

Stauffer, M., Fischer, A., Riesen, K., 2017a. Ensembles for Graph-based Key-
word Spotting in Historical Handwritten Documents, in: International Con-
ference on Document Analysis and Recognition, pp. 714–720.

Stauffer, M., Fischer, A., Riesen, K., 2017b. Speeding-Up Graph-based Key-
word Spotting by Quadtree Segmentations, in: International Conference on
Computer Analysis of Images and Patterns.

Stauffer, M., Fischer, A., Riesen, K., 2017c. Speeding-Up Graph-based Keyword
Spotting in Historical Handwritten Documents, in: International Workshop
on Graph-Based Representations in Pattern Recognition, pp. 83–93.

Stauffer, M., Tschachtli, T., Fischer, A., Riesen, K., 2017d. A Survey on
Applications of Bipartite Graph Edit Distance, in: International Workshop on
Graph-Based Representations in Pattern Recognition, pp. 242–252.

Sudholt, S., Fink, G.A., 2016. PHOCNet: A Deep Convolutional Neural Network
for Word Spotting in Handwritten Documents, in: International Conference
on Frontiers in Handwriting Recognition, pp. 277–282.

Terasawa, K., Tanaka, Y., 2009. Slit Style HOG Feature for Document Image
Word Spotting, in: International Conference on Document Analysis and
Recognition, pp. 116–120.

Thomas, S., Chatelain, C., Heutte, L., Paquet, T., Kessentini, Y., 2014. A
deep HMM model for multiple keywords spotting in handwritten documents.
Pattern Analysis and Applications 18, 1003–1015.

Toledo, J.I., Sudholt, S., Fornés, A., Cucurull, J., Fink, G.A., Lladós, J., 2016.
Handwritten Word Image Categorization with Convolutional Neural Net-
works and Spatial Pyramid Pooling, in: International Workshop on Structural,
Syntactic, and Statistical Pattern Recognition, pp. 543–552.

Wang, P., Eglin, V., Garcia, C., Largeron, C., Lladós, J., Fornés, A., 2014a. A
Coarse-to-Fine Word Spotting Approach for Historical Handwritten Docu-
ments Based on Graph Embedding and Graph Edit Distance, in: International
Conference on Pattern Recognition, pp. 3074–3079.

Wang, P., Eglin, V., Garcia, C., Largeron, C., Lladós, J., Fornés, A., 2014b.
A Novel Learning-Free Word Spotting Approach Based on Graph Repre-

12

sentation, in: International Workshop on Document Analysis Systems, pp.
207–211.

Wicht, B., Fischer, A., Hennebert, J., 2016. Deep Learning Features for Hand-
written Keyword Spotting, in: International Conference on Pattern Recogni-
tion, pp. 3434–3439.

Wilkinson, T., Brun, A., 2016. Semantic and Verbatim Word Spotting using Deep
Neural Networks, in: International Conference on Frontiers in Handwriting
Recognition, pp. 307–312.

Zhang, B., Srihari, S.N., Huang, C., 2003. Word image retrieval using binary
features, in: Document Recognition and Retrieval, pp. 45–54.

